New development in spin-orbit calculations with (GI)PAW pseudopotentials

U. Gerstmann, University of Paderborn

QE developers meeting, Lausanne 08.01.2014
Motivation – spin-orbit coupling in spectroscopy

spectroscopical data for large systems (> 300 atoms), e.g. interfaces, functionalized surfaces, molecular crystals, ...

- Electron Paramagnetic Resonance (EPR): non-perturbative calculation of g-tensor calculation as an alternative to linear magnetic response (GIPAW)
- Zero Field splitting (ZFS)
- Magnetic Circular Dichroism of X-ray adsorbtion (XMCD)

All these quantities require spin-orbit (SO) coupling
We need an efficient (non-) collinear relativistic treatment!
Electron Paramagnetic Resonance

- **Experimental Spin-Hamiltonian**

\[H_{\text{spin}} = \frac{\alpha}{2} \vec{B} \cdot \vec{g} \cdot \vec{S} + \sum_N \vec{I}_N \cdot \vec{A}_N \cdot \vec{S} + \vec{S} \cdot \vec{D} \cdot \vec{S} \]

- **g-tensors:**
 microscopic spins are aligned along the magnetic field \(\vec{B} \)
 \(\sim \) collinear relativistic description sufficient,

 but to get the full tensor (all matrix elements),
 three independent calculations necessary!
Choice of the relativistic Hamiltonian

- **basic idea:**
 Foldy-Wouthuysen (FW) transformation onto Dirac’s equation

\[
\mathcal{H} = \left(\frac{1}{2} \mathbf{p}^2 + \alpha \mathbf{A} \right)^2 - \frac{1}{2} \mathbf{p}^4 + ... + V_{\text{scf}} + \frac{\alpha}{2} \sigma \cdot \mathbf{B} + \mathcal{H}_{\text{SO}} - \frac{\alpha^2}{4} \nabla \cdot \mathbf{E}
\]

\[
\mathcal{H}_{\text{SO}} = - \frac{\alpha^2}{4} \sigma \cdot \left[\mathbf{E} \times (\mathbf{p} + \alpha \mathbf{A}) \right] - \frac{i \alpha^2}{8} \sigma \cdot \left[\nabla \times \mathbf{E} \right]
\]

small component reduced by six orders in $1/c$!

- remaining problem of the resulting FW-Hamiltonian
 (*ill defined expansion of the kinetic part*)
 is coped by using the *scalar-relativistic approximation*.

- **important advantage:** we can use *scalar-relativistic pseudos"
Choice of the relativistic Hamiltonian

- **1st step:** collinear spin-polarisation along \vec{e}_ν

\[H = H_0 + H_Z + H_{SO} \]

with \(H_{SO} = \frac{\alpha^2}{4} \vec{\sigma} \cdot \nabla V_{\text{eff}}^\sigma \times \left(\vec{p} + \alpha \vec{A} \right) \)

and (GI)PAW reconstruction \(H_{SO}^\text{flip} = T_0^+ H_{SO} T_0 \)

with \(\vec{\sigma} = \sigma_z \vec{e}_\nu = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \vec{e}_\nu \)

advantage: spin remains a “good” quantum number, spin channels remain decoupled.
Spin-orbit coupling in spectroscopy

Conclusions

\[g\text{-tensors via } \Delta g_{\mu\nu} = -\frac{2}{\alpha S} \bar{e}_{\mu} \cdot \vec{M}_{\text{orb}}(\vec{e}_{\nu}) \]

<table>
<thead>
<tr>
<th></th>
<th>[ppm]</th>
<th>Lin. Resp.</th>
<th>MTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_2^+)</td>
<td>(\Delta g_{\parallel})</td>
<td>-39.3</td>
<td>-39.3</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-41.7</td>
<td>-41.7</td>
</tr>
<tr>
<td>(CN)</td>
<td>(\Delta g_{\parallel})</td>
<td>-141</td>
<td>-139</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-2600</td>
<td>-2603</td>
</tr>
<tr>
<td>(CO^+)</td>
<td>(\Delta g_{\parallel})</td>
<td>-136</td>
<td>-134</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-3229</td>
<td>-3231</td>
</tr>
<tr>
<td>(BO)</td>
<td>(\Delta g_{\parallel})</td>
<td>-70</td>
<td>-75</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-2384</td>
<td>-2384</td>
</tr>
<tr>
<td>(BS)</td>
<td>(\Delta g_{\parallel})</td>
<td>-81</td>
<td>-82</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-9990</td>
<td>-10001</td>
</tr>
<tr>
<td>(AlO)</td>
<td>(\Delta g_{\parallel})</td>
<td>-149</td>
<td>-149</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-1834</td>
<td>-1842</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[ppm]</th>
<th>Linear Response</th>
<th>MTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>(\Delta g_{\parallel})</td>
<td>-\infty</td>
<td>-1999719</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>1920</td>
<td>-553</td>
</tr>
<tr>
<td>SiF</td>
<td>(\Delta g_{\parallel})</td>
<td>-\infty</td>
<td>-1995202</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-480</td>
<td>-2470</td>
</tr>
<tr>
<td>GeF</td>
<td>(\Delta g_{\parallel})</td>
<td>-\infty</td>
<td>-1998078</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-15505</td>
<td>-39101</td>
</tr>
<tr>
<td>SnF</td>
<td>(\Delta g_{\parallel})</td>
<td>-\infty</td>
<td>-1996561</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-64997</td>
<td>-142687</td>
</tr>
<tr>
<td>PbF</td>
<td>(\Delta g_{\parallel})</td>
<td>-\infty</td>
<td>-1999244</td>
</tr>
<tr>
<td></td>
<td>(\Delta g_{\perp})</td>
<td>-288383</td>
<td>-556326</td>
</tr>
</tbody>
</table>

- circumvents perturbation theory
- works for any DFT functional and also for metallic systems
Example: c-Si/a-Si:H heterojunctions

EDMR of a working device (solar cell):

in the 'Zero-field': spins are not necessarily aligned

<table>
<thead>
<tr>
<th>software</th>
<th>method</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>collinear weighted-average BS</td>
<td>−1.5</td>
</tr>
<tr>
<td>Quantum Espresso</td>
<td>collinear weighted-average BS</td>
<td>−1.6</td>
</tr>
<tr>
<td>Quantum Espresso</td>
<td>noncollinear</td>
<td>−0.2</td>
</tr>
<tr>
<td>experiment</td>
<td></td>
<td>−0.2</td>
</tr>
</tbody>
</table>

noncollinear spin-polarization becomes important: relativistic two-component description (spinors)!
Efficient PAW pseudopotential implementation

By the PAW transformation

\[\Delta \mathcal{H}_{SO} = T_0^+ \Delta \mathcal{H}_{SO} T_0, \]

\[\Delta \mathcal{H}_{SO} = \frac{\alpha^2}{4} \left\{ \hat{\sigma} \cdot (\nabla V_{ps}(\vec{r}) \times \vec{p}) + \sum_{R} |p_{R,n}\rangle f_{R,nm} \langle p_{R,m}| \right\} =: F_{NL}^R \]

with

\[f_{R,nm} = \langle \phi_{R,n} | \hat{\sigma} \cdot \nabla V \times \vec{p} | \phi_{R,m} \rangle - \langle \phi_{R,n} | \hat{\sigma} \cdot \nabla V_{ps} \times \vec{p} | \phi_{R,m} \rangle \]

can be very accurately computed in a "reconstruction-only" way:

\[\Delta \mathcal{H}_{SO} = \frac{\alpha^2}{4} \sum_{R} |p_{R,n}\rangle \langle \phi_{R,n} | \frac{1}{r} \frac{\partial V(r)}{\partial r} \hat{\sigma} \cdot \hat{L} | \phi_{R,m} \rangle \langle p_{R,m}| \]

Saves a factor-of-10 ... 20 in computational time!
Spin-orbit coupling in spectroscopy

Conclusions

Spin-orbit coupling in a “reconstruction-only” way

\[\Delta \mathcal{H}_{SO} = \frac{\alpha^2}{4} \sum_{\mathbf{R}} |p_{\mathbf{R},n}\rangle \langle \phi_{\mathbf{R},n}| \frac{1}{r} \frac{\partial V(r)}{\partial r} \mathbf{\vec{\sigma}} \cdot \mathbf{\vec{L}} |\phi_{\mathbf{R},m}\rangle \langle p_{\mathbf{R},m}| \]

- applicable to scalar-relativistic (GI)-PAW pseudo-potentials
- implemented in collinear way

\[\mathbf{\vec{\sigma}} = \sigma_z \mathbf{\vec{e}}_\nu = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{\vec{e}}_\nu \]

as well as non-collinear way:

\[\mathbf{\vec{\sigma}} \cdot \mathbf{\vec{L}} = \begin{pmatrix} L_z & L_x - iL_y \\ L_x + iL_y & -L_z \end{pmatrix} \]

U. Gerstmann – QE developers meeting, Trieste 2013

New development in spin-orbit calculations with (GI)PAW pseudopotentials
Spin-orbit coupling in a “reconstruction-only” way

Correct description of expectation values in spin-aligned cases.

What about relativistic band structures?

Bi(111) surface as an example:
Spin-orbit coupling in a “reconstruction-only” way

grey: full-relativistic bandstructure

no spin-orbit coupling

“reconstruction-only” spin-orbit

15 min → 10 h

50 min

New development in spin-orbit calculations with (GI)PAW pseudopotentials
Required changes in the code

```plaintext
<gipaw_module> to be put into PW (or Modules);
also needed for 'the XMCD extension of the XSpectra code,
the 'orbital magnetization' PRB 81, 060409 (2010);
in slightly modified form also for 'converse-NMR' (Emine)

including:

init_gipaw_1  basic initialization of GIPAW data
init_gipaw_2  paw_beta functions, called by e_bands.f90 etc.
paw_gipaw    UPF read-in, paw_becp, paw_becp_nc,...
gipaw_setup  called by hinit0.f90
             includes the additional terms to
             h_psi (collinear) and h_psi_nc:
             ------------------------  ------------------------
             add_so_bare    add_so_bare_nc
             add_so_Fnl    add_so_Fnl_nc
             deeq_so substitutes deeq, deeq_nc.

essential:

update set_vrs: calculation of dvrs
             (gradient of the total potential in real space,
              to be stored in scf_mod, allocated in allocate_fft)

update force_us AND stress_us nonlocal contributions from deeq_so and paw_becp(_nc).
```
conclusions – approximated SO-coupling

“reconstruction-only” scheme for scalar-relativistic pseudos:

- SO-including spinor good enough to compute reliable expectations values (spectroscopical data)

- relativistic bandstructures of the full-relativistic approach are precisely reproduced (e.g. Bi(111) bilayer)

- forces and even stress (!!!) can be calculated straightforward.

- user-friendly (standard PAW pseudos), fast converging.

- improved results if using relativistic ZORA for the SO-part, many-body effects (spin-other orbit contributions?)
Thanks for your attention!

Paderborn:
Martin Rohrmüller (ZFS)
Nora Jenny Vollmers (MCD)

Davide Ceresoli, CNR-ISTM Milano
Ari P. Seitsonen, Uni Zürich
Matteo Calandra, IMPMC Paris
Francesco Mauri, IMPMC Paris

- Financial support:
 DFG (SPP-1601), DAAD

- HLRS supercomputer, Stuttgart
- PC² Nehalem Cluster, Paderborn

U. Gerstmann – QE developers meeting, Trieste 2013
New development in spin-orbit calculations with (GI)PAW pseudopotentials