
User’s Guide for
Quantum ESPRESSO (v.7.0)

Contents

1 Introduction 1
1.1 People . 3
1.2 Contacts . 4
1.3 Guidelines for posting to the mailing list . 4
1.4 Terms of use . 5

2 Installation 6
2.1 Download . 6
2.2 Prerequisites . 7
2.3 Building with cMake . 8
2.4 Building with make . 8

2.4.1 Manual configuration . 11
2.5 Libraries . 12
2.6 Libxc library . 14

2.6.1 Linking in Quantum ESPRESSO . 14
2.6.2 Usage . 15
2.6.3 Differences between Libxc and internal functionals 16
2.6.4 Special cases . 16
2.6.5 XC test . 17

2.7 Compilation . 17
2.8 Running tests and examples . 18

2.8.1 Test-suite . 18
2.8.2 Examples . 18

2.9 Installation tricks and problems . 19
2.9.1 All architectures . 19
2.9.2 Linux PC . 20
2.9.3 Linux PC clusters with MPI . 21
2.9.4 Microsoft Windows . 22
2.9.5 Mac OS . 22
2.9.6 Cray machines . 23

1

2.9.7 Obsolescent architectures . 24

3 Parallelism 25
3.1 Understanding Parallelism . 25
3.2 Running on parallel machines . 25
3.3 Parallelization levels . 26
3.4 Understanding parallel I/O . 27
3.5 Tricks and problems . 28

1 Introduction

This guide gives a general overview of the contents and of the installation of Quantum
ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Op-
timization), version 7.0.

Important notice: due to the lack of time and of manpower, this manual does not cover
many important aspects and may contain outdated information.

The Quantum ESPRESSO distribution contains the core packages PWscf (Plane-Wave
Self-Consistent Field) and CP (Car-Parrinello) for the calculation of electronic-structure prop-
erties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseu-
dopotentials. It also includes other packages for more specialized calculations:

� PWneb: energy barriers and reaction pathways through the Nudged Elastic Band (NEB)
method.

� PHonon: vibrational properties with Density-Functional Perturbation Theory (DFPT).

� PostProc: codes and utilities for data postprocessing.

� PWcond: ballistic conductance.

� XSPECTRA: K-, L1-, L2,3-edge X-ray absorption spectra.

� TD-DFPT: spectra from Time-Dependent Density-Functional Perturbation Theory.

� GWL: electronic excitations within the GW approximation and with the Bethe-Salpeter
Equation

� EPW: calculation of the electron-phonon coefficients, carrier transport, phonon-limited
superconductivity and phonon-assisted optical processes;

� HP: calculation of Hubbard U parameters using DFPT;

� QEHeat: energy current in insulators for thermal transport calculations.

The following auxiliary packages are included as well:

� PWgui: a Graphical User Interface, producing input data files for PWscf and some PostProc
codes.

� atomic: atomic calculations and pseudopotential generation.

2

A copy of required external libraries is either included or automatically downloaded from the
net. Finally, several additional packages that exploit data produced by Quantum ESPRESSO
or patch some Quantum ESPRESSO routines can be automatically installed using make:

� Wannier90: maximally localized Wannier functions.

� WanT: quantum transport properties with Wannier functions.

� YAMBO: electronic excitations within Many-Body Perturbation Theory, GW and Bethe-
Salpeter equation.

� D3Q: anharmonic force constants.

� GIPAW (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR
g-tensor.

For Quantum ESPRESSO with the self-consistent continuum solvation (SCCS) model, aka
“Environ”, see http://www.quantum-environment.org/.

Documentation on single packages can be found in the Doc/ directory of each package.
A detailed description of input data is available for most packages in files INPUT *.txt and
INPUT *.html.

The Quantum ESPRESSO codes work on many different types of Unix machines, includ-
ing parallel machines using both OpenMP and MPI (Message Passing Interface). Quantum
ESPRESSO also runs on Mac OS X and MS-Windows machines (see section 2.2). Since
Feb.2021 the main repository also works with NVidia GPU’s.

Further documentation, beyond what is provided in this guide, can be found in:

� the Doc/ and examples/ directories of the Quantum ESPRESSO distribution;

� the web site www.quantum-espresso.org;

� the archives of the mailing list: See section 1.2, “Contacts”, for more info.

People who want to contribute to Quantum ESPRESSO should read the Wiki pages on
GitLab: https://gitlab.com/QEF/q-e/-/wikis.

This guide does not explain the basic Unix concepts (shell, execution path, directories etc.)
and utilities needed to run Quantum ESPRESSO; it does not explain either solid state
physics and its computational methods. If you want to learn the latter, you should first read a
good textbook, such as e.g. the book by Richard Martin: Electronic Structure: Basic Theory
and Practical Methods, Cambridge University Press (2004); or: Density functional theory: a
practical introduction, D. S. Sholl, J. A. Steckel (Wiley, 2009); or Electronic Structure Calcula-
tions for Solids and Molecules: Theory and Computational Methods, J. Kohanoff (Cambridge
University Press, 2006). Then you should consult the documentation of the package you want
to use for more specific references.

All trademarks mentioned in this guide belong to their respective owners.

3

1.1 People

The maintenance and further development of the Quantum ESPRESSO distribution is pro-
moted by the Quantum ESPRESSO Foundation under the coordination of Paolo Giannozzi
(Univ. Udine and IOM-CNR, Italy) and Pietro Delugas (SISSA Trieste) with a strong support
from the MaX - Materials design at the Exascale EU Centre of Excellence. The GPU porting
is mostly the work of Pietro Bonfà (Univ. Parma).

Contributors to Quantum ESPRESSO, beyond the authors of the papers mentioned in
Sec.1.4, include:

� Alexandre Tkatchenko’s group, in particular Szabolcs Goger (U. Luxembourg), and Robert
DiStasio’s group, in particular Hsin-Yu Ko (Cornell), for Many-Body Dispersion (MBD)
correction;

� Federico Ficarelli and Daniele Cesarini (CINECA), with help from Ye Luo (Argonne) and
Sebastian Gsänger, for CMake support;

� Ye Luo (Argonne) for many contributions to improved threading, GPU porting, CI (Con-
tinuous integration), and testing;

� Fabio Affinito and Sergio Orlandini (CINECA) for ELPA support, for contributions to
the FFT library, and for various parallelization improvements;

� Sebastiano Caravati for direct support of GTH pseudopotentials in analytical form, San-
tana Saha and Stefan Goedecker (Basel U.) for improved UPF converter of newer GTH
pseudopotentials;

� Axel Kohlmeyer for libraries and utilities to call Quantum ESPRESSO from external
codes (see the COUPLE sub-directory), made the parallelization more modular and usable
by external codes;

� Èric Germaneau for TB09 meta-GGA functional, using libxc;

� Guido Roma (CEA Saclay) for vdw-df-obk8 e vdw-df-ob86 functionals;

� Yves Ferro (Univ. Provence) for SOGGA and M06L functionals;

� Ikutaro Hamada (NIMS, Japan) for RPBE, OPTB86B-vdW, REV-vdW-DF2 functionals,
fixes to pw2xsf utility;

� Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II) for disper-
sions interaction in the framework of DFT-D;

� Filippo Spiga (University of Cambridge, now at NVidia) for mixed MPI-OpenMP paral-
lelization and for the first GPU-enabled version;

� Costas Bekas and Alessandro Curioni (IBM Zurich) for the initial BlueGene porting.

Contributors to specific Quantum ESPRESSO packages are acknowledged in the docu-
mentation of each package.

An alphabetic list of further contributors who answered questions on the mailing list, found
bugs, helped in porting to new architectures, wrote some code, contributed in some way or
another at some stage, follows:

4

Åke Sandgren, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli As-
chauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Scott Brozell, Claudia
Bungaro, Paolo Cazzato, Gabriele Cipriani, Jiayu Dai, Stefano Dal Forno, Cesar Da
Silva, Alberto Debernardi, Gernot Deinzer, Alin Marin Elena, Francesco Filipponi,
Prasenjit Ghosh, Marco Govoni, Thomas Gruber, Martin Hilgeman, Yosuke Kanai,
Konstantin Kudin, Nicolas Lacorne, Hyungjun Lee, Stephane Lefranc, Sergey Lisenkov,
Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet, William Parker,
Pasquale Pavone, Mickael Profeta, Chung-Yuan Ren, Kurt Stokbro, David Strubbe,
Sylvie Stucki, Paul Tangney, Pascal Thibaudeau, Davide Tiana, Antonio Tilocca,
Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zilberman, Federico
Zipoli,

and let us apologize to everybody we have forgotten.

1.2 Contacts

The main entry point for Quantum ESPRESSO users is the web site http://www.quantum-espresso.org/.
There you find the stable releases for download, general information and documentation.

The recommended place where to ask questions about installation and usage of Quantum
ESPRESSO, and to report problems, is the mailing list users@lists.quantum-espresso.org.
Here you can obtain help from the developers and from knowledgeable users. You have to be
subscribed (see the “Contacts” section of the web site) in order to post to the users’ list. Please
check your spam folder if you do not get a confirmation message when subscribing.

Please read the guidelines for posting, section 1.3! PLEASE NOTE: only messages that
appear to come from the registered user’s e-mail address, in its exact form, will be accepted.
In case of trouble, carefully check that your return e-mail is the correct one (i.e. the one you
used to subscribe).

The main entry point for developers is the GitLab web site: https://gitlab.com/QEF/q-e.
If you need to contact the developers for specific questions about coding, proposals, offers of
help, etc., you may either post an “Issue” to GitLab, or send a message to the developers’
mailing list developers@lists.quantum-espresso.org. Please do not post general questions
there: they will be ignored.

1.3 Guidelines for posting to the mailing list

Life for mailing list subscribers will be easier if everybody complies with the following guidelines:

� Before posting, please: browse or search the archives – links are available in the “Contacts”
section of the web site. Most questions are asked over and over again. Also: make an
attempt to search the available documentation, notably the FAQs and the User Guide(s).
The answer to most questions is already there.

� Reply to both the mailing list and the author or the post, using “Reply to all”.

� Sign your post with your name and affiliation.

� Choose a meaningful subject. Do not start a new thread by making a ”reply” to an
existing message: it will confuse the ordering of messages into threads that most mailers
can do. In particular, do not use ”Reply” to a Digest!!!

5

� Be short: no need to send 128 copies of the same error message just because this is what
came out of your 128-processor run. No need to send the entire compilation log for a
single error appearing at the end.

� Do not post large attachments: post a link to a place where the attachment(s) can be
downloaded from, such as e.g. DropBox, GoogleDocs, or one of the various web temporary
storage spaces.

� Avoid excessive or irrelevant quoting of previous messages. Your message must be imme-
diately visible and easily readable, not hidden into a sea of quoted text.

� Remember that even experts cannot guess where a problem lies in the absence of sufficient
information. One piece of information that must always be provided is the version number
of Quantum ESPRESSO.

� Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer,
even less to an immediate answer.

� Finally, please note that the mailing list is not a replacement for your own work, nor is
it a replacement for your thesis director’s work.

1.4 Terms of use

Quantum ESPRESSO is free software, released under the GNU General Public License.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the
distribution).

We shall greatly appreciate if scientific work done using the Quantum ESPRESSO dis-
tribution will contain an acknowledgment to the following references:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de
Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.
Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L.
Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P.
Umari, R. M. Wentzcovitch, J.Phys.: Condens.Matter 21, 395502 (2009)

and

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M.
Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carn-
imeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A.
Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J
Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M .Lazzeri, M. Marsili, N.
Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto,
S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smo-
gunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J.Phys.:
Condens.Matter 29, 465901 (2017)

Users of the GPU-enabled version should also cite the following paper:

6

P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni,
S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov,
A. Urru, S. Baroni, J. Chem. Phys. 152, 154105 (2020)

Note the form Quantum ESPRESSO for textual citations of the code. Please also see
package-specific documentation for further recommended citations. Pseudopotentials should
be cited as (for instance)

[] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.

2 Installation

2.1 Download

Quantum ESPRESSO is distributed in source form, but selected binary packages and virtual
machines are also available. Stable and development releases of the Quantum ESPRESSO
source package (current version is 7.0), as well as available binary packages, can be downloaded
from the links listed in the “Download” section of www.quantum-espresso.org.

The Quantum Mobile virtual machine for Windows/Mac/Linux/Solaris provides a complete
Ubuntu Linux environment, containing Quantum ESPRESSO and much more. Link and
description in https://www.materialscloud.org/work/quantum-mobile.

For source compilation, uncompress and unpack compressed archives in the typical .tar.gz
format using the command:

tar zxvf qe-X.Y.Z.tar.gz

(a hyphen before ”zxvf” is optional) where X.Y.Z stands for the version number.
A few additional packages that are not included in the base distribution will be downloaded

on demand at compile time, using either make or CMake (see Sec.2.7). Note however that this
will work only if the computer you are installing on is directly connected to the internet and
has either wget or curl installed and working. If you run into trouble, manually download each
required package into subdirectory archive/, not unpacking or uncompressing it: command
make will take care of this during installation.

The Quantum ESPRESSO distribution contains several directories. Some of them are
common to all packages:

7

Modules/ Fortran modules and utilities used by all programs
upflib/ pseudopotential-related code, plus conversion tools
include/ files *.h included by fortran and C source files
clib/ libraries and utilities written in C
FFTXlib/ FFT libraries
LAXlib/ Linear Algebra (parallel) libraries
KS Solvers/ Iterative diagonalization routines
UtilXlib/ Miscellaneous timing, error handling, MPI utilites
XClib/ Exchange-correlation functionals (excepted van der Waals)
install/ installation scripts and utilities
pseudo/ pseudopotential files used by examples
Doc/ general documentation
archive/ external libraries in .tar.gz form
external/ external libraries downloaded by CMake
test-suite/ automated tests

while others are specific to a single package:
PW/ PWscf package
EPW/ EPW package
NEB/ PWneb package
PP/ PostProc package
PHonon/ PHonon package
PWCOND/ PWcond package
CPV/ CP package
atomic/ atomic package
GUI/ PWGui package
QEHeat/ QEHeat package
HP/ HP package

Finally, directory COUPLE/ contains code and documentation that is useful to call Quantum
ESPRESSO programs from external codes; directory LR Modules/ contains source files for
modules that are common to all linear-response codes.

2.2 Prerequisites

To install Quantum ESPRESSO from source, you need first of all a minimal Unix environ-
ment, that is: a command shell (e.g., bash, sh) and utilities make, awk, sed. For MS-Windows,
see Sec.2.9.4. You will also need a recent (v.3.14 or later) working CMake software if you
prefer installation with CMake (supported since v.6.7), otherwise you will need the configure

command from autoconf (see next subsection).
Note that the scripts contained in the distribution assume that the local language is set to

the standard, i.e. ”C”; other settings may break them. Use export LC ALL=C (sh/bash) or
setenv LC ALL C (csh/tcsh) to prevent any problem when running scripts (including installa-
tion scripts).

Second, you need a Fortran compiler compliant with F2008 standard. For parallel execution,
you will also need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel
machines, or for simple multicore parallelization, an OpenMP-aware compiler and libraries are
also required. To compile for GPUs you need a recent version of the NVidia HPC SDK (software
development kit), formerly PGI compiler, freely available for download.

8

As a rule, Quantum ESPRESSO tries to keep compatibility with older compilers, avoiding
nonstandard extensions and newer features that are not widespread or stabilized. If however
your compiler is older say than ∼ 5 years or so it is quite likely that something will not work.
The same applies to mathematical and MPI libraries. For GPU compilation, get the most recent
NVidia HPC SDK you can: while compilers from v. 17.4 on should work, several problems and
limitations are known to exist for old compiler versions.

Big computing centers typically provide a Fortran compiler complete with all needed li-
braries. Workstations or “commodity” machines using PC hardware, may or may not have
the needed software. If not, you need to buy a commercial compiler or to use the open-source
gfortran compiler from the gcc distribution (and possibly MPI libraries and run-time software).
Note that most commercial compilers are also available free of charge under some conditions
(e.g. academic or personal usage, no support) and may provide MPI libraries and run-time
software as well.

2.3 Building with cMake

See https://gitlab.com/QEF/q-e/-/wikis/Developers/CMake-build-system.

2.4 Building with make

To install the Quantum ESPRESSO source package using make, run the configure script.
This is actually a wrapper to the true configure, located in the install/ subdirectory
(configure -h for help). configure will (try to) detect compilers and libraries available on
your machine, and set up things accordingly. Presently it supports all ”common” computers,
that is: based on Intel, AMD, ARM CPUs, running Linux, Mac OS X, MS-Windows. Quan-
tum ESPRESSO is known to work on many more kinds of machines but may requires some
tweaking, especially for the hardware of large HPC centers. Detailed but sometimes outdated
installation instructions for specific HPC machines may be found in files install/README.sys,
where sys is the machine name.

Instructions for the impatient:

cd qe-X.Y.Z/

./configure

make all

This will (try to) produce parallel (MPI) executable if a proper parallel environment is detected,
serial executables otherwise. For OpenMP executables, specify ./configure --enable-openmp.
Symlinks to executable programs will be placed in the bin/ subdirectory. Note that both C
and Fortran compilers must be in your execution path, as specified in the PATH environment
variable.
configure generates the following files:

make.inc compilation rules and flags (used by Makefile)
install/configure.msg a report of the configuration run (not needed for compilation)
install/config.log detailed log of the configuration run (useful for debugging)
include/qe cdefs.h (previously: include/c defs.h) a few definitions used by C files
include/configure.h optional: info on compilation flags (to enable its usage,

uncomment #define __HAVE_CONFIG_INFO in Modules/environment.f90)
In addition, configure generates (since v.7) files make.depend, containing dependencies upon

9

modules, in the various subdirectories. If you add/remove/move/rename modules, or change
the list of objects in any Makefile, type make depend, or run ./install/makedeps.sh, to
update files make.depend.

It is convenient to use ”parallel make” to speed up compilation: make -jN compiles in
parallel on N processors. Note that if you interrupt make, depending upon what it was doing
you may run into trouble the next time you type make(for instance, if make is interrupted while
unpacking and compiling the FoX library). If so, run make clean before running make again.

You should always be able to compile the Quantum ESPRESSO suite of programs without
having to edit any of the generated files. However you may have to tune configure by specifying
appropriate environment variables and/or command-line options. Usually the tricky part is to
get external libraries recognized and used: see Sec.2.5 for details and hints. In most cases, you
may simply edit file make.inc.

Environment variables may be set in any of these ways:

export VARIABLE=value; ./configure # sh, bash, ksh

setenv VARIABLE value; ./configure # csh, tcsh

env VARIABLE=value ./configure # any shell

./configure VARIABLE=value # any shell

As a rule: do not define environment variables for configure unless you have a good reason to.
Try configure with no options as a first step. Some environment variables that are relevant
to configure are:

ARCH label identifying the machine type (see below)
F90, F77, CC names of Fortran, Fortran-77, and C compilers
MPIF90 name of parallel Fortran 90 compiler (using MPI)
CPP source file preprocessor (defaults to $CC -E)
LD linker (defaults to $MPIF90)
(C,F,F90,CPP,LD)FLAGS compilation/preprocessor/loader flags
LIBDIRS extra directories where to search for libraries

(note that F90 is an “historical” name – we actually use Fortran 2008 – and that it should
be used only together with option --disable-parallel. In fact, the value of F90 must be
consistent with the parallel Fortran compiler which is determined by configure and stored in
the MPIF90 variable).

For example, the following command line:

./configure MPIF90=mpif90 FFLAGS="-O2 -assume byterecl" \

CC=gcc CFLAGS=-O3 LDFLAGS=-static

instructs configure to use mpif90 as Fortran compiler with flags -O2 -assume byterecl, gcc
as C compiler with flags -O3, and to link with flag -static. Note that the value of FFLAGS must
be quoted, because it contains spaces. NOTA BENE: passing the complete path to compilers
(e.g., F90=/path/to/f90xyz) may lead to obscure errors during compilation.

If your machine type is unknown to configure, you may use the ARCH variable to suggest
an architecture among supported ones. Some large parallel machines using a front-end (e.g.
Cray XT) will actually need it, or else configure will correctly recognize the front-end but not
the specialized compilation environment of those machines. In some cases, cross-compilation
requires to specify the target machine with the --host option. This feature has not been
extensively tested, but we had at least one successful report (compilation for NEC SX6 on a
PC). Currently supported architectures are:

10

x86 64 Intel and AMD 64-bit running Linux
arm ARM machines (with gfortran or armflang)
crayxt4 Cray XT4/XT5/XE machines
mac686 Apple Intel machines running Mac OS X
mingw32 Cross-compilation for MS-Windows, using mingw, 32 bits
mingw64 As above, 64 bits
cygwin MS-Windows PCs with Cygwin
ppc64* Linux PowerPC machines, 64 bits
ppc64-le* as above, with IBM xlf compiler
ppc64-bg* IBM BlueGene
ppc64-bgq* IBM BlueGene Q
necsx* NEC SX-6 and SX-8 machines
ia32* Intel 32-bit machines (x86) running Linux
ia64* Intel 64-bit (Itanium) running Linux

Note: x86 64 replaces amd64 since v.4.1. Cray Unicos machines, SGI machines with MIPS
architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no
longer supported since v.5.0; IBM machines with AIX are no longer supported since v.6.0; all
architectures marked with a * are to be considered obsolescent or obsolete.

Finally, configure recognizes the following command-line options. Not all of them are
implemented for all compilers, though. Default value is between bracket:
--enable-parallel compile for parallel (MPI) execution if possible (yes)
--enable-openmp compile for OpenMP execution if possible (no)
--enable-static produce static executables, arger but more portable (no)
--enable-shared produce objects that are suitable for shared libraries (no)
--enable-debug compile with debug flags (no)
--enable-pedantic compile with gfortran pedantic flags on (no)
--enable-signals enable signal trapping (no)

and the following optional packages:

11

--with-scalapack (yes|no|intel) Use scalapack if available.
Set to intel to use Intel MPI and BLACS (default: use OpenMPI)

--with-elpa-include Specify full path of ELPA include and modules headers (no)
--with-elpa-lib Specify full path of the ELPA library (no)
--with-elpa-version Specify ELPA API version: 2015 for ELPA releases 2015.x

and 2016.05; 2016 for ELPA releases 2016.11, 2017.x and
2018.05; 2018 for ELPA releases 2018.11 and beyond (2018)

--with-hdf5 (no | yes | <path>)
Compile HDF5 support (no). If “yes”, configure assumes a
valid v. >= 1.8.16 HDF5 installation with h5cc and h5fc in the
default executable search path. If <path> is specified, it must be the
root folder of a standalone hdf5 installation.

--with-hdf5-libs Specify the link options and libraries needed to link HDF5, if configure
fails to detect them. These options are usually composed by many
substrings and must be enclosed into quotes.

--with-hdf5-include Specify full path the HDF5 include folder containing module and
headers files. Use it if configure fails to find the include folder.

--with-libxc Enable support for the libxc library (no)
--with-libxc-prefix directory where libxc is installed
--with-libxc-include directory where libxc Fortran headers reside

In order to compile the code for GPU’s you will need a recent version – the more recent,
the better – of the NVidia HPC software development kit (SDK). OpenMP must be enabled,
and you may want to use a CUDA-aware MPI distribution if running on multiple GPUs in order
to optimize the interprocess data transfer. The following configure options are available:
--with-cuda=value enable compilation of GPU-accelerated subroutines.

value should point the path where the CUDA toolkit
is installed, e.g. /opt/cuda (default: no)

--with-cuda-cc=value sets the compute capabilities for the compilation
of the accelerated subroutines.
value must be consistent with the hardware and the
NVidia driver installed on the workstation or on the
compute nodes of the HPC facility (default: 35)

--with-cuda-runtime=value sets the version of the CUDA toolkit used
for the compilation of the accelerated code.
value must be consistent with the
CUDA Toolkit installed on the workstation
or available on the compute nodes of the HPC facility.

--enable-cuda-env-check=[yes] if set, sanity checks on the CUDA environment
are performed (default: no).

To modify or extend configure, see the Wiki pages on GitLab: https://gitlab.com/QEF/q-e/-/wikis.
For advanced users only!

2.4.1 Manual configuration

If configure stops before the end, and you don’t find a way to fix it, you have to write a
working make.inc file (optionally, include/qe cdefs.h). The template used by configure

is install/make.inc.in and contains explanations of the meaning of the various variables.

12

Note that you may need to select appropriate preprocessing flags in conjunction with the
desired or available libraries (e.g. you need to add -D FFTW to DFLAGS if you want to link
internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in
include/defs.h.README.

Even if configure works, yuo may need to tweak the make.inc file. It is very simple,
but please note that if you change any settings (e.g. preprocessing, compilation flags) after a
previous, successful or failed, compilation, you must run make clean before recompiling, unless
you know exactly which routines are affected by the changed settings and how to force their
recompilation. Running configure again cleans objects and executables, unless you use option
--save.

2.5 Libraries

Quantum ESPRESSO contains a copy of some needed external libraries:

� FoX for reading and writing xml files;

� BLAS (http://www.netlib.org/blas/) and LAPACK (http://www.netlib.org/lapack/)
for linear algebra;

� FFTW (http://www.fftw.org/) for Fast Fourier Transforms.

Optimized vendor-specific libraries often yield huge performance gains with respect to com-
piled libraries and should be used whenever possible. configure always try to locate the best
mathematical libraries.

BLAS and LAPACK Quantum ESPRESSO can use any architecture-optimized BLAS
and LAPACK replacements, like those contained e.g. in the MKL for Intel and AMD CPUs,
or ESSL for IBM Power machines.

If no optimized libraries are available, one may try the ATLAS library: http://math-atlas.sourceforge.net/.
Note that ATLAS is not a complete replacement for LAPACK: it contains all of the BLAS,
plus the LU code, plus the full storage Cholesky code. Follow the instructions in the ATLAS
distributions to produce a full LAPACK replacement.

Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige
Goto. The library is now available under an open-source license: see the GotoBLAS2 page at
http://www.tacc.utexas.edu/tacc-software/gotoblas2/.

FFT The FFTXlib of Quantum ESPRESSO contains a copy of an old FFTW library. It
also supports the newer FFTW3 library and some vendor-specific FFT libraries. configure

will first search for vendor-specific FFT libraries; if none is found, it will search for an external
FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW. configure
will add the appropriate preprocessing options:

� -D LINUX ESSL for ESSL on IBM Linux machines,

� -DASL for NEC ASL library on NEC machines (obsolete?),

� -D DFTI for DFTI (Intel MKL library),

13

� -D FFTW3 for FFTW3 (external),

� -D FFTW for FFTW (internal library),

to DFLAGS in the make.inc file. If you edit make.inc manually, please note that one and only
one among the mentioned preprocessing option must be set.

If you have MKL libraries, you may either use the provided FFTW3 interface (v.10 and
later), or directly link FFTW3 from MKL (v.12 and later) or use DFTI (recommended).

MPI libraries MPI libraries are usually needed for parallel execution, unless you are happy
with OpenMP-only multicore parallelization. In well-configured machines, configure should
find the appropriate parallel compiler for you, and this should find the appropriate libraries.
Since often this doesn’t happen, especially on PC clusters, see Sec.2.9.3.

Note: since v.6.1, MPI libraries implementing v.3 of the standard (notably, non-blocking
broadcast and gather operations) are required.

Libraries for accelerators The accelerated version of the code uses standard CUDA libraries
such as cublas, cufft, cusolver and the eigensolver library explicitly developed for Quan-
tum ESPRESSO by NVidia and distributed at https://github.com/NVIDIA/Eigensolver gpu.

HDF5 The HDF5 library (https://www.hdfgroup.org/downloads/hdf5/), v.1.8.16 or later,
can be used to perform binary I/O using the HDF5 format.

If compiling the HDF5 library from sources, attention must be paid to pass options:
--enable-fortran, --enable-fortran2003, and --enable-parallel (see below), to the configure
script of HDF5 (not of Quantum ESPRESSO).

To use HDF5 is usually sufficient to specify the path to the fortran compiler wrapper for
HDF5 (h5fc of h5pfc with the --with-hdf5= option of configure. If the wrapper is in the de-
fault path, just use --with-hdf5=yes. The configure script is usually able to extract the linker
options and the include directory path from the output of the wrapper. If it fails, the user can
provide configure options --with-hdf5-libs=<options> and --with-hdf5-include=<path>

for the linker options and include path respectively. These options are often needed when using
the HDF5 packages provided by many LINUX distributions. In this case you may first try the
--with-hdf5=yes option. If it fails, just type command h5fc --show (or h5pfc if you are
using parallel HDF5): the command will print out the linker and include options to be passed
manually to the configure script.

The configure script is able to determine whether one is linking to a serial or parallel HDF5
library, and will set the flag -D HDF5 SERIAL in the make.inc file accordingly.

Other libraries Quantum ESPRESSO can use the MASS vector math library from IBM,
if available (only on machines with XLF compiler: likely obsolete).

If optimized libraries are not found The configure script attempts to find optimized
libraries, but may fail if they have been installed in non-standard places. You should exam-
ine the final value of BLAS LIBS, LAPACK LIBS, FFT LIBS, MPI LIBS (if needed), MASS LIBS

(IBM only), either in the output of configure or in the generated make.inc, to check whether
it found all the libraries that you intend to use.

14

If some library was not found, you can specify a list of directories to search in the envi-
ronment variable LIBDIRS, and rerun configure; directories in the list must be separated by
spaces. For example:

./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"

If this still fails, you may set some or all of the * LIBS variables manually and retry. For
example:

./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"

Beware that in this case, configure will blindly accept the specified value, and won’t do any
extra search.

2.6 Libxc library

Quantum ESPRESSO is compatible with libxc version 4.3.0 or later (compatibility with
older versions is not guaranteed).
The libxc functionals are available for LDA, GGA and metaGGA, however, not all of them
are straightforwardly usable. Some of them may depend on specific external parameters and
some others may provide as output the energy or the potential, but not both. Therefore some
attention has to be paid when using libxc. Warning messages should appear in the output
when particular cases whose correct operation in Quantum ESPRESSO is not guaranteed
are chosen.

2.6.1 Linking in Quantum ESPRESSO

Once installed libxc, the linking with Quantum ESPRESSO can be enabled directly through
the configuration script by adding the two switches --with-libxc and --with-libxc-prefix,
e.g.:

./configure --with-libxc --with-libxc-prefix=’/path/to/libxc/’

By adding the first switch only an automatic search for the libxc folder will be attempted, but
its success is not guaranteed. It is always preferable to specify the second switch too. Optionally,
a third switch can be added, namely --with-libxc-include=’/path/to/libxc/include’,
which specifies the path to the Fortran headers (usually it is not necessary).

Alternatively, the link to libxc can be activated after the configuration of Quantum
ESPRESSO by modifying the make.inc file in the main folder in this way:

� add -D LIBXC to DFLAGS

� add -I/path/to/libxc/include/ to IFLAGS

� set LD LIBS=-L/path/to/libxc/lib/ -lxcf03 -lxc

Then Quantum ESPRESSO can be compiled as usual.

15

Note for version 5.0.0: if the version of libxc is 5.0.0, the last point must be replaced by:

� set LD LIBS=-L/path/to/libxc/lib/ -lxcf90 -lxc

since the f03 interfaces are no longer available. They have been restored in following releases.
Version 5.0.0 is still usable, but, before compiling Quantum ESPRESSO, a string replacement
is necessary, namely ‘xc f03’ must be replaced with ‘xc f90’ everywhere in the XClib folder.

2.6.2 Usage

In order to use libxc functionals, you can enforce them from input by including the input dft

string in the system namelist. Starting from v7.0 of Quantum ESPRESSO the only allowed
notation for DFTs that include Libxc terms is the index one. For example, to use the libxc

version of the PBE functional (both exchange and correlation):

input_dft = ‘XC-000I-000I-101L-130L-000I-000I’

The letters I or L next to each ID stand for Internal and libxc. This is equivalent to the old
full-name notation:

input_dft = ‘gga_x_pbe gga_c_pbe’ ***OLD***

The order must be the usual one, namely LDA exchange, LDA correlation, GGA exchange,
GGA correlation, MGGA exchange, MGGA correlation. libxc exchange+correlation function-
als can be put in the exchange or in the correlation slot with no difference.
The reason why the full-name notation has been disabled is to eliminate the risk of overlaps
among different names (occurring especially when combinations of internal and libxc DFTs
are used).
The complete list of libxc functionals (and their IDs) is available at:

https://www.tddft.org/programs/libxc/functionals/

Combinations of Quantum ESPRESSO and libxc functionals are allowed in PW, but some
attention has to be paid to their reciprocal compatibility (see section below).
For example, the internal exchange term of PBE together with the correlation term of PBE in
libxc is obtained by:

input_dft = ‘XC-001I-000I-003L-130L-000I-000I’

which corresponds to the old:

input_dft = ‘sla pbx gga_c_pbe’ ***OLD***

Note that when using GGA internal functionals you must always specify the LDA term too,
while it is not the case for the libxc ones.
Abbreviations are allowed when zero tails are present. The above example is still valid by
putting:

input_dft = ‘XC-001I-000I-003L-130L’

since no MGGA terms are present.
Non-local terms can be included by just adding their name after the index notation, for example:

input_dft=‘XC-001i-004i-013i-vdw2’

16

2.6.3 Differences between Libxc and internal functionals

There are some differences between Quantum ESPRESSO functionals and libxc ones. In
Quantum ESPRESSO the LDA and the GGA terms are separated and must be specified
independently. In libxc the GGA functionals already include the LDA part (Slater exchange
and Perdew&Wang correlation in most of the cases with the exception, for example, of Lee
Yang Parr functionals).
The libxc metaGGA functionals may or may not need the LDA and GGA terms, depending
on the cases, therefore a good check of the chosen functionals is recommended before doing
expensive runs.
Some functionals in libxc incorporate the exchange part and the correlation one into one term
only (e.g. the ones that include the ‘ xc’ kind label in their name). In these cases the whole
functional is formally treated as ‘correlation only’ by Quantum ESPRESSO. This does not
imply any loss of information.

2.6.4 Special cases

A number of libxc functional routines need extra information on input and/or provide only
partial information on output (e.g. the energy or the potential only). In these cases the use
of such functionals may not be straightforward and, depending on the cases, may require some
work on the Quantum ESPRESSO source code.

External parameters. Several functionals in libxc depend on one or more external pa-
rameters. Some of these can be recovered inside Quantum ESPRESSO, some others are
not directly available. In all these cases a direct intervention on the Quantum ESPRESSO
source code might be necessary in order to be able to properly use such functionals. However
two routines have been defined in the XC library of Quantum ESPRESSO that ease the task
of setting and recovering the external parameters in libxc:

� get libxc ext param: this function receives as input the ID of the libxc functional and
the index of the chosen parameter and returns its value. If the parameter has not been
set before it returns its default value.

� set libxc ext param: this routine receives as input the index of the functional family-
type (from 1 to 6: lda-exch, lda-corr, gga-exch, ...), the index of the chosen libxc param-
eter and the value to set it to.

In order to see the available parameters for a given libxc functional and their corresponding
indexes, the xc infos.x program is available in XClib folder. For more details see Sec. 2.6.5.
The two routines can be called almost anywhere in Quantum ESPRESSO, however, as any
other XClib setting routine, they must be declared through the xc lib module.
Without setting the external parameters inside the code, their default value will be assumed.
This could lead to results different from the expectations.
In any case, when external parameters are needed by the chosen functionals, a warning message
will appear in the output of Quantum ESPRESSO. An example of Libxc parameter setting
can be found in the xclib test.f90 code (see below).

17

Functionals with partial output. A few libxc functional routines provides the potential
but not the energy. These functionals are available in Quantum ESPRESSO for all the
families and their output energy is set to zero.

MGGA Functionals that depend on the Laplacian of the density. At present such
functionals are formally usable in Quantum ESPRESSO , but their dependency on the
Laplacian is ignored and the corresponding output term of the potential is set to zero. Since
the Laplacian of the density is computable in Quantum ESPRESSO, they might be fully
exploited with a limited intervention on the code.

Other functionals. Besides exchange (x), correlation (c) and exchange plus correlation
(xc), a fourth kind of functionals is available in libxc, the kinetic functionals (k). At present,
they are not usable in Quantum ESPRESSO.

2.6.5 XC test

A testing program, xclib test.x, for the XClib library of Quantum ESPRESSO is available.
The program is available for LDA, GGA and MGGA functionals (both QE and Libxc). It also
tests the potential derivatives for LDA (dmxc) and GGA (dgcxc).
Another small program, xc infos.x, is available in the XClib folder starting from v6.8. It
receives as input the name of any DFT usable in Quantum ESPRESSO (both internal and
libxc) and provides infos about their family, type, external parameters, limitations, references,
etc.
See XClib/README.TEST file for further details on each of the two programs.

2.7 Compilation

The compiled codes can run with any input: almost all variables are dinamically allocated at
run time. Only a few variables have fixed dimensions, set in file Modules/parameters.f90:

ntypx = 10, &! max number of different types of atom

npsx = ntypx, &! max number of different PPs (obsolete)

nsx = ntypx, &! max number of atomic species (CP)

npk = 40000, &! max number of k-points

lmaxx = 3, &! max non local angular momentum (l=0 to lmaxx)

lqmax= 2*lmaxx+1 ! max number of angular momenta of Q

These values should work for the vast majority of cases. In case you need more atomic types
or more k-points, edit this file and recompile.

At your choice, you may compile the complete Quantum ESPRESSO suite of programs
(with make all), or only some specific programs. All executables are linked in main bin

directory. make with no arguments yields ain updated list of valid compilation targets.
For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where X.Y.Z stands for

the version number of the GUI (should be the same as the general version number). If you are
using sources from the git repository, see the GUI/README file instead.

If make refuses for some reason to download additional packages, manually download them
into subdirectory archive/, not unpacking or uncompressing them, and try make again. Also
see Sec.(2.1).

18

2.8 Running tests and examples

As a final check that compilation was successful, you may want to run some or all of the tests
and examples. Notice that most tests and examples are devised to be run serially or on a small
number of processors; do not use tests and examples to benchmark parallelism, do not try to
run on too many processors.

2.8.1 Test-suite

Automated tests give a ”pass/fail” answer. All tests run quickly (less than a minute each at
most), but they are not meant to be realistic, just to test a specific case. Many features are
tested but only for the following codes: pw.x, cp.x, ph.x, epw.x, hp.x. Instructions for the
impatient:

cd test-suite

make run-tests

Instructions for all others: go to the test-suite/ directory, read the README file, or at least,
type make. You may need to edit the run-XX.sh shells, defining variables PARA PREFIX and
PARA POSTFIX (see below for their meaning).

2.8.2 Examples

There are many examples and reference data for almost every piece of Quantum ESPRESSO,
but you have to manually inspect the results.

In order to use examples, you should edit file environment variables, setting the following
variables as needed.

BIN DIR: directory where executables reside
PSEUDO DIR: directory where pseudopotential files reside
TMP DIR: directory to be used as temporary storage area

The default values of BIN DIR and PSEUDO DIR should be fine, unless you have installed
things in nonstandard places. TMP DIR must be a directory where you have read and write
access to, with enough available space to host the temporary files produced by the example
runs, and possibly offering high I/O performance (i.e., don’t use an NFS-mounted directory).
NOTA BENE: do not use a directory containing other data: the examples will clean it!

If you have compiled the parallel version of Quantum ESPRESSO (this is the default
if parallel libraries are detected), you will usually have to specify a launcher program (such
as mpirun or mpiexec) and the number of processors: see Sec.3 for details. In order to do
that, edit again the environment variables file and set the PARA PREFIX and PARA POSTFIX

variables as needed. Parallel executables will be run by a command like this:

$PARA_PREFIX pw.x $PARA_POSTFIX -i file.in > file.out

For example, if the command line is like this (as for an IBM SP):

mpirun -np 4 pw.x -i file.in > file.out

19

you should set PARA PREFIX="mpirun -np 4", PARA POSTFIX="". Furthermore, if your ma-
chine does not support interactive use, you must run the commands specified above through
the batch queuing system installed on that machine. Ask your system administrator for instruc-
tions. For execution using OpenMP on N threads, use PARA PREFIX="env OMP NUM THREADS=N

... ".
To run an example, go to the corresponding directory (e.g. PW/examples/example01) and

execute:

./run_example

This will create a subdirectory results/, containing the input and output files generated by
the calculation. Some examples take only a few seconds to run, while others may require up to
several minutes.

In each example’s directory, the reference/ subdirectory contains verified output files,
that you can check your results against. You may get slightly different reesults on different
machines, in particular if different FFT dimensions are automatically selected. For this reason,
a plain diff of your results against the reference data doesn’t work, or at least, it requires human
inspection of the results.

The example scripts stop if an error is detected. You should look inside the last written
output file to understand why.

2.9 Installation tricks and problems

2.9.1 All architectures

� Working Fortran and C compilers must be present in your PATH. If configure says that
you have no working compiler, well, you have no working compiler, at least not in your
PATH, and not among those recognized by configure.

� If you get Compiler Internal Error or similar messages: your compiler version is buggy.
Try to lower the optimization level, or to remove optimization just for the routine that
has problems. If it doesn’t work, or if you experience weird problems at run time, try
to install patches for your version of the compiler (most vendors release at least a few
patches for free), or to upgrade to a more recent compiler version.

� If you get error messages at the loading phase that look like file XYZ.o: unknown / not
recognized/ invalid / wrong file type / file format / module version, one of the following
things have happened:

1. you have leftover object files from a compilation with another compiler: run make

clean and recompile.

2. make did not stop at the first compilation error (it may happen in some software
configurations). Remove the file *.o that triggers the error message, recompile, look
for a compilation error.

If many symbols are missing in the loading phase: you did not specify the location of all
needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the
needed order. Note that Quantum ESPRESSO is self-contained (with the exception
of MPI libraries for parallel compilation): if system libraries are missing, the problem is
in your compiler/library combination or in their usage, not in Quantum ESPRESSO.

20

� If you get Segmentation fault or similar errors in the provided tests and examples: your
compiler, or your mathematical libraries, or MPI libraries, or a combination thereof, is
buggy, or there is some software incompatibility. Although one can never rule out the
presence of subtle bugs in Quantum ESPRESSO that are not revealed during the
testing phase, it is very unlikely that this happens on the provided tests and examples.

� If all test fails, look into the output and error files: there is some dumb reason for failure.

� If most test pass but some fail, again: look into the output and error files. A frequent
source of trouble is complex function zdotc. See the ”Linux PCs with gfortran compilers”
paragraph.

2.9.2 Linux PC

Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emu-
lation and in 64-bit mode. 64-bit executables can address a much larger memory space than
32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit
machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not
guaranteed to work and will not give any advantage anyway.

Currently, configure supports Intel (ifort), NAG (nagfor), NVidia (nvfortran, formerly
PGI pgf90), ARM (armflang), and gfortran compilers. Pathscale, Sun Studio, AMD Open64,
are no longer supported after v.6.2: g95, since v.6.1.

Intel MKL mathematical libraries are supported. ACML support must be considered as
obsolete.

It is usually convenient to create semi-statically linked executables (with only libc, libm,
libpthread dynamically linked). If you want to produce a binary that runs on different machines,
compile it on the oldest machine you have (i.e. the one with the oldest version of the operating
system).

Linux PCs with gfortran Gfortran v.4.8.5, still found on CentOS machines, no longer
compiles Quantum ESPRESSO v.6.6 or later, due to a gfortran bug. You need at least
gfortran v.4.9.X.

”There is a known incompatibility problem between different calling convention for Fortran
functions that return complex values [...] If your code crashes during a call to zdotc, recompile
Quantum ESPRESSO using the internal BLAS and LAPACK routines (using configure

options --with-internal-blas and --with-internal-lapack) to see if the problem disap-
pears; or, add the -ff2c flag” (info by Giovanni Pizzi, Jan. 2013). You may also consider
replacing the offending calls to zdotc with fortran intrinsic dot product.

If you want to use MKL libraries together with gfortran, link -lmkl gf lp64, not -lmkl intel lp64.

Linux PCs with Intel compiler (ifort) The Intel compiler ifort http://software.intel.com/
produces fast executables, at least on Intel CPUs, but not all versions work as expected. In
particular, ifort versions earlier than v.15 miscompile the new XML code in QE v.6.4 and later
and should not be used any longer. In case of trouble, update your version with the most recent
patches. Since each major release of ifort differs a lot from the previous one, compiled objects
from different releases may be incompatible and should not be mixed.

If configure doesn’t find the compiler, or if you get Error loading shared libraries at run
time, you may have forgotten to execute the script that sets up the correct PATH and library

21

path. Unless your system manager has done this for you, you should execute the appropriate
script – located in the directory containing the compiler executable – in your initialization files.
Consult the documentation provided by Intel.

The warning: feupdateenv is not implemented and will always fail, can be safely ignored.
Complains about “recommended formats” may also be ignored.

Linux PCs with MKL libraries On Intel CPUs it is very convenient to use Intel MKL
libraries (freely available at https://software.intel.com/en-us/performance-libraries).
MKL libraries can be used also with non-Intel compilers. They work also for AMD CPU,
selecting the appropriate machine-optimized libraries: see “Linux PCs with AMD processors”.

configure properly detects only recent (v.12 or later) MKL libraries, as long as the $MKL-
ROOT environment variable is set in the current shell. Normally this environment variable
is set by sourcing the Intel MKL or Intel Parallel Studio environment script. By default the
non-threaded version of MKL is linked, unless option configure --with-openmp is specified.
In case of trouble, refer to the following web page to find the correct way to link MKL:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/.

For parallel (MPI) execution on multiprocessor (SMP) machines, set the environment vari-
able OMP NUM THREADS to 1 unless you know how to run MPI+OpenMP. See Sec.3 for
more info on this and on the difference between MPI and OpenMP parallelization.

If you get a mysterious ”too many communicators” error and a subsequent crash: there is
a bug in Intel MPI and MKL 2016 update 3. See this thread and the links quoted therein:
http://www.mail-archive.com/pw_forum@pwscf.org/msg29684.html.

Linux PCs with AMD processors For AMD CPUs you may find convenient to link AMD
acml libraries (can be freely downloaded from AMD web site). configure should recognize
properly installed acml libraries. UPDATE (February 2020): acml have been discontinued.
There are new libraries called AMD Optimizing CPU Libraries (AOCL), tuned for the AMD
EPYC processor family. “ Recently I played around with some AMD EPYC cpus and the bad
thing is that I also saw some strange numbers when using libflame/aocl 2.1. (...) Since version
2020 the MKL performs rather well when using AMD cpus, however, if you want to get the
best performance you have to additionally set:

export MKL_DEBUG_CPU_TYPE=5

which gives an additional 10-20% speedup with MKL 2020, while for earlier versions the speedup
is greater than 200%. [...] Another note, there seem to be problems using FFTW interface of
MKL with AMD cpus. To get around this problem, one has to additionally set

export MKL_CBWR=AUTO

“ (Info by Tobias Klöffel, Feb. 2020)

2.9.3 Linux PC clusters with MPI

PC clusters running some version of MPI are a very popular computational platform nowadays.
Quantum ESPRESSO is known to work with at least two of the major MPI implementations
(MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. configure
should automatically recognize a properly installed parallel environment and prepare for parallel
compilation. Unfortunately this not always happens. In fact:

22

� configure tries to locate a parallel compiler in a logical place with a logical name, but
if it has a strange names or it is located in a strange location, you will have to instruct
configure to find it. If there is no parallel Fortran compiler, you will have to install one.

� configure tries to locate libraries (both mathematical and parallel libraries) in the usual
places with usual names, but if they have strange names or strange locations, you will
have to rename/move them, or to instruct configure to find them. If MPI libraries are
not found, parallel compilation is disabled.

� configure tests that the compiler and the libraries are compatible (i.e. the compiler may
link the libraries without conflicts and without missing symbols). If they aren’t and the
compilation fails, configure will revert to serial compilation.

Apart from such problems, Quantum ESPRESSO compiles and works on all non-buggy,
properly configured hardware and software combinations. In some cases you may have to
recompile MPI libraries: not all MPI installations contain support for the Fortran compiler of
your choice (or for any Fortran compiler at all!).

If Quantum ESPRESSO does not work for some reason on a PC cluster, try first if
it works in serial execution. A frequent problem with parallel execution is that Quantum
ESPRESSO does not read from standard input, due to the configuration of MPI libraries: see
Sec.3.5. If you are dissatisfied with the performances in parallel execution, see Sec.3 and in
particular Sec.3.5.

2.9.4 Microsoft Windows

Since February 2020 Quantum ESPRESSO can be compiled on MS-Windows 10 using PGI
19.10 Community Edition (freely downloadable). configure works with the bash script pro-
vided by PGI but the configure of FoX fails: use script install/build fox with pgi.sh to
manually compile FoX.

Another option: use MinGW/MSYS. Download the installer from https://osdn.net/projects/mingw/,
install MinGW, MSYS, gcc and gfortran. Start a shell window; run ”./configure”; edit make.inc;
uncommenting the second definition of TOPDIR (the first one introduces a final ”/” that Win-
dows doesn’t like); run ”make”. Note that on some Windows the code fails when checking that
tmp dir is writable, for unclear reasons.

Another option is Cygwin, a UNIX environment which runs under Windows: see
http://www.cygwin.com/.

Windows-10 users may also enable the Windows Subsystem for Linux (see here:
https://docs.microsoft.com/en-us/windows/wsl/install-win10), install a Linux distri-
bution, compile Quantum ESPRESSO as on Linux. It works very well.

As a final option, one can use Quantum Mobile:
https://www.materialscloud.org/work/quantum-mobile.

2.9.5 Mac OS

”I have had some success compiling pw.x on the newish apple hardware. Running run-tests-
pw-parallel resulted in all but 3 tests passed (3 unknown). QE6.7 works out of the box:

� Install homebrew

23

� Using homebrew install gcc (11.2.0), open-mpi (4.1.1 2), fftw3 (3.3.10), and veclibfort
(0.4.2 7)

To configure QE:

./configure FC=mpif90 CC=mpicc CPP=cpp-11 BLAS_LIBS="-L/opt/homebrew/lib

-lveclibfort" LIBDIRS=/opt/homebrew/lib

Current develop branch needed two changes:

1. The script external/devxlib/config/config.sub is outdated, and needs to be adjusted
to correctly parse the machine information. I pulled a more up-to-date version from
iains/gcc-darwin-arm64 github repo

2. PW/src/efermig.f90 needed to be compiled without optimization -O0. No idea why at
the moment.”

(Info by John Vinson, NIST)
Mac OS-X machines with gfortran or with the Intel compiler ifort and MKL libraries should

work, but ”your mileage may vary”, depending upon the specific software stack you are using.
Parallel compilation with OpenMPI should also work.

If you get an error like

clang: error: no input files

make[1]: *** [laxlib.fh] Error 1

make: *** [libla] Error 1i

redefine CPP as CPP=gcc -E in make.inc.
Gfortran information and binaries for Mac OS-X here: http://hpc.sourceforge.net/ and

https://wiki.helsinki.fi/display/HUGG/GNU+compiler+install+on+Mac+OS+X.
Mysterious crashes in zdotc are due to a known incompatibility of complex functions with

some optimized BLAS. See the ”Linux PCs with gfortran” paragraph.

2.9.6 Cray machines

For Cray XE machines:

$ module swap PrgEnv-cray PrgEnv-pgi

$./configure --enable-openmp --enable-parallel --with-scalapack

”Now, despite what people can imagine, every CRAY machine deployed can have different
environment. For example on the machine I usually use for tests [...] I do have to unload some
modules to make QE running properly. On another CRAY [...] there is also Intel compiler as
option and the system is slightly different compared to the other. So my recipe should work,
99% of the cases.” (info by Filippo Spiga)

For Cray XT machines, use ./configure ARCH=crayxt4 or else configure will not recog-
nize the Cray-specific software environment.

Older Cray machines: T3D, T3E, X1, are no longer supported.

24

2.9.7 Obsolescent architectures

Intel Xeon Phi For Intel Xeon CPUs with Phi coprocessor, see this link:
https://software.intel.com/en-us/articles/explicit-offload-for-quantum-espresso.

There are three ways of compiling:

� offload mode, executed on main CPU and offloaded onto coprocessor ”automagically”;

� native mode, executed completely on coprocessor;

� symmetric mode, requiring creation of both binaries.

”You can take advantage of the offload mode using the libxphi library. This library offloads the
BLAS/MKL functions on the Xeon Phi platform hiding the latency times due to the communi-
cation. You just need to compile this library and then to link it dynamically. The library works
with any version of QE. Libxphi is available from https://github.com/cdahnken/libxphi.
Some documentation is available therein.

Instead, if you want to compile a native version of QE, you just need to add the -mmic flag
and cross compile. If you want to use the symmetric mode, you need to compile twice: with
and without the -mmic flag”. ”[...] everything, i.e. code+libraries, must be cross-compiled
with the -mmic flag. In my opinion, it’s pretty unlikely that native mode can outperform the
execution on the standard Xeon cpu. I strongly suggest to use the Xeon Phi in offload mode,
for now” (info by Fabio Affinito, March 2015).

IBM BlueGene The current configure was working on the machines at CINECA and at
Jülich. For other machines, you may need something like

./configure ARCH=ppc64-bg BLAS_LIBS=... LAPACK_LIBS=... \

SCALAPACK_DIR=... BLACS_DIR=..."

where the various * LIBS and * DIR ”suggest” where the various libraries are located.

25

3 Parallelism

3.1 Understanding Parallelism

Two different parallelization paradigms are currently implemented in Quantum ESPRESSO:

1. Message-Passing (MPI). A copy of the executable runs on each CPU; each copy lives in a
different world, with its own private set of data, and communicates with other executables
only via calls to MPI libraries. MPI parallelization requires compilation for parallel
execution, linking with MPI libraries, execution using a launcher program (depending
upon the specific machine). The number of CPUs used is specified at run-time either as
an option to the launcher or by the batch queue system.

2. OpenMP. A single executable spawn subprocesses (threads) that perform in parallel spe-
cific tasks. OpenMP can be implemented via compiler directives (explicit OpenMP) or
via multithreading libraries (library OpenMP). Explicit OpenMP require compilation for
OpenMP execution; library OpenMP requires only linking to a multithreading version
of the mathematical libraries. The number of threads is specified at run-time in the
environment variable OMP NUM THREADS.

MPI is the well-established, general-purpose parallelization. In Quantum ESPRESSO
several parallelization levels, specified at run-time via command-line options to the executable,
are implemented with MPI. This is your first choice for execution on a parallel machine.

The support for explicit OpenMP is steadily improving. Explicit OpenMP can be used
together with MPI and also together with library OpenMP. Beware conflicts between the various
kinds of parallelization! If you don’t know how to run MPI processes and OpenMP threads in
a controlled manner, forget about mixed OpenMP-MPI parallelization.

3.2 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically one has to specify:

1. a launcher program such as mpirun or mpiexec, with the appropriate options (if any);

2. the number of processors, typically as an option to the launcher program;

3. the program to be executed, with the proper path if needed;

4. other Quantum ESPRESSO-specific parallelization options, to be read and interpreted
by the running code.

Items 1) and 2) are machine- and installation-dependent, and may be different for interactive
and batch execution. Note that large parallel machines are often configured so as to disallow
interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your
specific configuration (shell, execution path, etc). Item 4) is optional but it is very important
for good performances. We refer to the next section for a description of the various possibilities.

26

3.3 Parallelization levels

In Quantum ESPRESSO several MPI parallelization levels are implemented, in which both
calculations and data structures are distributed across processors. Processors are organized in
a hierarchy of groups, which are identified by different MPI communicators level. The groups
hierarchy is as follow:

� world: is the group of all processors (MPI COMM WORLD).

� images: Processors can then be divided into different ”images”, each corresponding to a
different self-consistent or linear-response calculation, loosely coupled to others.

� pools: each image can be subpartitioned into ”pools”, each taking care of a group of
k-points.

� bands: each pool is subpartitioned into ”band groups”, each taking care of a group of
Kohn-Sham orbitals (also called bands, or wavefunctions). Especially useful for calcula-
tions with hybrid functionals.

� PW: orbitals in the PW basis set, as well as charges and density in either reciprocal or real
space, are distributed across processors. This is usually referred to as ”PW paralleliza-
tion”. All linear-algebra operations on array of PW / real-space grids are automatically
and effectively parallelized. 3D FFT is used to transform electronic wave functions from
reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes
of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors
that are distributed to processors).

� tasks: In order to allow good parallelization of the 3D FFT when the number of processors
exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to
“task” groups so that each group can process several wavefunctions at the same time.
Alternatively, when this is not possible, a further subdivision of FFT planes is performed.

� linear-algebra group: A further level of parallelization, independent on PW or k-point
parallelization, is the parallelization of subspace diagonalization / iterative orthonormal-
ization. Both operations required the diagonalization of arrays whose dimension is the
number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed
block-like across the “linear-algebra group”, a subgroup of the pool of processors, orga-
nized in a square 2D grid. As a consequence the number of processors in the linear-algebra
group is given by n2, where n is an integer; n2 must be smaller than the number of proces-
sors in the PW group. The diagonalization is then performed in parallel using standard
linear algebra operations. (This diagonalization is used by, but should not be confused
with, the iterative Davidson algorithm). The preferred option is to use ELPA and ScaLA-
PACK; alternative built-in algorithms are anyway available.

Note however that not all parallelization levels are implemented in all codes.

About communications Images and pools are loosely coupled: inter-processors communi-
cation between different images and pools is modest. Processors within each pool are instead
tightly coupled and communications are significant. This means that fast communication hard-
ware is needed if your pool extends over more than a few processors on different nodes.

27

Choosing parameters : To control the number of processors in each group, command line
switches: -nimage, -npools, -nband, -ntg, -ndiag or -northo (shorthands, respectively: -ni,
-nk, -nb, -nt, -nd) are used. As an example consider the following command line:

mpirun -np 4096 ./neb.x -ni 8 -nk 2 -nt 4 -nd 144 -i my.input

This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space
in this case) at the same time, each of which is distributed across 512 processors. k-points are
distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64
processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the
subspace Hamiltonian is distributed to a square grid of 144 processors (12x12).

Default values are: -ni 1 -nk 1 -nt 1 ; nd is set to 1 if ScaLAPACK is not compiled, it
is set to the square integer smaller than or equal to the number of processors of each pool.

Massively parallel calculations For very large jobs (i.e. O(1000) atoms or more) or for
very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use
in an effective way all available parallelization levels: on linear algebra (requires compilation
with ELPA and/or ScaLAPACK), on ”task groups” (requires run-time option ”-nt N”), and
mixed MPI-OpenMP (requires OpenMP compilation: configure–enable-openmp). Without a
judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU
requirements. Note that I/O may also become a limiting factor.

3.4 Understanding parallel I/O

In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge
density, etc), that have to be written to temporary files during the calculation, or to data files
at the end of the calculation. This can be done in two different ways:

� “collected”: all slices are collected by the code to a single processor that writes them to
disk, in a single file, using a format that doesn’t depend upon the number of processors
or their distribution. This is the default since v.6.2 for final data.

� “portable”: as above, but data can be copied to and read from a different machines
(this is not guaranteed with Fortran binary files). Requires compilation with -D__HDF5

preprocessing option and HDF5 libraries.

There is a third format, no longer used for final data but used for scratch and restart files:

� “distributed”: each processor writes its own slice to disk in its internal format to a
different file. The “distributed” format is fast and simple, but the data so produced is
readable only by a job running on the same number of processors, with the same type of
parallelization, as the job who wrote the data, and if all files are on a file system that is
visible to all processors (i.e., you cannot use local scratch directories: there is presently
no way to ensure that the distribution of processes across processors will follow the same
pattern for different jobs).

The directory for data is specified in input variables outdir and prefix (the former can
be specified as well in environment variable ESPRESSO TMPDIR): outdir/prefix.save. A
copy of pseudopotential files is also written there. If some processor cannot access the data

28

directory, the pseudopotential files are read instead from the pseudopotential directory specified
in input data. Unpredictable results may follow if those files are not the same as those in the
data directory!

IMPORTANT: Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally
the scratch directory outdir should be a modern Parallel File System. If you do not have any,
you can use local scratch disks (i.e. each node is physically connected to a disk and writes to
it) but you may run into trouble anyway if you need to access your files that are scattered in
an unpredictable way across disks residing on different nodes.

You can use input variable disk io to vary the amount of I/O done by pw.x. Since v.5.1,
the default value is disk io=’low’, so the code will store wavefunctions into RAM and not on
disk during the calculation. Specify disk io=’medium’ only if you have too many k-points and
you run into trouble with memory; choose disk io=’none’ if you do not need to keep final
data files.

3.5 Tricks and problems

Many problems in parallel execution derive from the mixup of different MPI libraries and run-
time environments. There are two major MPI implementations, OpenMPI and MPICH, coming
in various versions, not necessarily compatible; plus vendor-specific implementations (e.g. In-
tel MPI). A parallel machine may have multiple parallel compilers (typically, mpif90 scripts
calling different serial compilers), multiple MPI libraries, multiple launchers for parallel codes
(different versions of mpirun and/or mpiexec). You have to figure out the proper combination
of all of the above, which may require using command module or manually setting environment
variables and execution paths. What exactly has to be done depends upon the configuration
of your machine. You should inquire with your system administrator or user support (if avail-
able; if not, YOU are the system administrator and user support and YOU have to solve your
problems).

Always verify if your executable is actually compiled for parallel execution or not: it is
declared in the first lines of output. Running several instances of a serial code with mpirun or
mpiexec produces strange crashes.

Trouble with input files Some implementations of the MPI library have problems with
input redirection in parallel. This typically shows up under the form of mysterious errors when
reading data. If this happens, use the option -i (or -in, -inp, -input), followed by the input
file name. Example:

pw.x -i inputfile -nk 4 > outputfile

Of course the input file must be accessible by the processor that must read it (only one processor
reads the input file and subsequently broadcasts its contents to all other processors).

Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even
the -i/in/inp/input mechanism that is present in all Quantum ESPRESSO codes. In this
case, use the -i option of mpirun.lsf to provide an input file.

Trouble with MKL and MPI parallelization If you notice very bad parallel performances
with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by
the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default

29

on multicore machines. You must set the environment variable OMP NUM THREADS to 1 to
disable it. Note that if for some reason the correct setting of variable OMP NUM THREADS
does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov.
2008) suggests to use the -x option to mpirun to propagate OMP NUM THREADS to all
processors. Axel Kohlmeyer suggests the following (April 2008): ”(I’ve) found that Intel is now
turning on multithreading without any warning and that is for example why their FFT seems
faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the
multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also
if you use the ’numactl’ tool on linux to bind a job to a specific cpu core, MKL will still try
to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to
either link with

-lmkl intel lp64 -lmkl sequential -lmkl core (on 64-bit: x86 64, ia64)
-lmkl intel -lmkl sequential -lmkl core (on 32-bit, i.e. ia32)

or edit the libmkl ’platform’.a file. I’m using now a file libmkl10.a with:

GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)

It works like a charm”. UPDATE: Since v.4.2, configure links by default MKL without
multithreaded support.

Trouble with compilers and MPI libraries Many users of Quantum ESPRESSO, in
particular those working on PC clusters, have to rely on themselves (or on less-than-adequate
system managers) for the correct configuration of software for parallel execution. Mysteri-
ous and irreproducible crashes in parallel execution are sometimes due to bugs in Quantum
ESPRESSO, but more often than not are a consequence of buggy compilers or of buggy or
miscompiled MPI libraries.

30

