Points inside the Brillouin zone
Notes by Andrea Dal Corso (SISSA - Trieste)



1 Brillouin zone

QuanTUuM ESPRESSO (QE) support for the definition of high symmetry lines inside the Bril-
louin zone (BZ) is still rather limited. However QE can calculate the coordinates of the vertexes
of the BZ and of particular points inside the BZ. These notes show the shape and orientation
of the BZ used by QE. The principal direct and reciprocal lattice vectors, as implemented in
the routine latgen, are illustrated here together with the labels of each point. These labels
can be given as input in a band or phonon calculation to define paths in the BZ. This feature
is available with the option tpiba b or crystal b in a ’bands’ calculation or with the option
g-in_band form in the input of the matdyn.x code. BEWARE: you need to explicitly specify
ibrav to use this feature. Lines in reciprocal space are defined by giving the coordinates of
the starting and ending points and the number of points of each line. The coordinates of the
starting and ending points can be given explicitly with three real numbers or by giving the
label of a point known to QE. For example:

X 10
gG 25
0.5 0.5 0.5 1

indicate a path composed by two lines. The first line starts at point X, ends at point I, and
has 10 k points. The second line starts at I', ends at the point of coordinates (0.5,0.5,0.5)
and has 25 k points. Greek labels are prefixed by the letter g: gG indicates the I" point, gS
the ¥ point etc. Subscripts are written after the label: the point P; is indicated as P1. In
the following section you can find the labels of the points defined in each BZ. There are many
conventions to label high symmetry points inside the BZ. The variable point_label type
selects the set of labels used by QE. The default is point_label type=’SC’ and the labels
have been taken from W. Setyawan and S. Curtarolo, Comp. Mat. Sci. 49, 299 (2010).
Other choices can be more convenient in other situations. The names reported in the web
pages http://www.cryst.ehu.es/cryst/get_kvec.html are available for some BZ. You can
use them by setting (point_label type=’BI’), others can be added in the future. This option
is available only with ibrav+#0 and for all positive ibrav with the exception of the base centered
monoclinic (ibrav=13), and triclinic (ibrav=14) lattices. In these cases you have to give all
the coordinates of the k-points.

1.1 ibrav=1, simple cubic lattice
The primitive vectors of the direct lattice are:

a; = a(l, 0, 0),
a, = a(0,1,0),
ag = CL(O, 0, 1)7

while the reciprocal lattice vectors are:

b; = —(1,0,0
1 a(??)?
2T
b, = —(0,1,0
2 a(77>>
2w
bs = —(0,0,1).
3 a(v?)



The Brilloin zone is:

X; is available only with point_label type=’BI’.

1.2 ibrav=2, face centered cubic lattice

The primitive vectors of the direct lattice are:

while the reciprocal lattice vectors are:

The Brillouin zone is:
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Labels corresponding to point_label_type=’SC’ and to point_label_type=’BI’ are shown
on the left and on the right, respectively.

1.3 ibrav=3, body centered cubic lattice

The primitive vectors of the direct lattice are:

a
a; = 5(17171)7
a
ag = 5(_17171)7
a
az = 5(_17_171)7
while the reciprocal lattice vectors are:
21
b, = —(1,0,1
1 CL( g )7
2
b, = —(-1,1,0
2 CL( P )’
2
by = 2(0,-1,1)



H; is available only with point_label type=’BI’.

1.4 ibrav=4, hexagonal lattice

The primitive vectors of the direct lattice are:

a; = a(1,0,0),
1 \/g
— _— — 0
ag a( 27 92 9 )7
c
= 0,0, -
as (1( ) 7a)7
while the reciprocal lattice vectors are:
27 1
b, = —(1,—,0
1 a( 9 37 )7
27 2
b, = —(0,—,0
2 a( 7\/37 )7
27 a
b; = —(0,0,-).
3 a ( 9 ’C)

The BZ is:

The figure has been obtained with ¢/a = 1.4.



1.5 ibrav=>5, trigonal lattice

The primitive vectors of the direct lattice are:

1
a; = a(\/T§ sin 6, —3 sinf, cosf),
a; = a(0,sind,cosh),
1
az; = a(—? sin9,—§ sinf, cos ),

while the reciprocal lattice vectors are:

2T 1 1 1

b, = — —
! a(\/gsjne’ 381119’30080)’
2w 2 1
2 = 0550 Feose”
2m 1 1 1
b3 = ( )7

‘@' /3sinf 3sinf 3cosd
(1)

where sinf = \/g\/l — cosa and cosf = \/g\/ 14+ 2cosa and « is the angle between any two

primitive direct lattice vectors. There are two possible shapes of the BZ, depending on the
value of the angle a. For a < 90° we have:

k

The figure has been obtained with o = 70°. For 90° < v < 120° we have:



The figure has been obtained with a = 110°.

1.6 ibrav=6, simple tetragonal lattice
The primitive vectors of the direct lattice are:

a, = a(1,0,0),

Ay = 0,(0, ]., O),

C
= 0,0, -
ag a( ) aa)7

while the reciprocal lattice vectors are:

2

b, = —(1

1 a(7070>7
2

b, = —(0,1,0

2 a(a ) )7
2

by = -2(0,0,%).
a C

The figure has been obtained with ¢/a = 1.4.



1.7 ibrav=7, centered tetragonal lattice

The primitive vectors of the direct lattice are:

a c
= —(1,—-1,-
ax 2( ) 7a)7
a c
= —(1,1,-
ag 2( ) 7a)7
a c
az = 5(_17_17_)7
while the reciprocal lattice vectors are:
2
bl = _7T(17 170)7
2m a
b, = —(0,1, -
2 a ( ) ’C)’
2 a
b; = —(-1,0,—-).
3 a ( ) 70)

In this case there are two different shapes of the BZ depending on the ¢/a ratio. For ¢/a <1
we have:

The figure has been obtained with ¢/a = 0.5 (a > ¢). For ¢/a > 1 we have:



S2 G()

The figure has been obtained with ¢/a = 1.4 (a < ¢). Labels corresponding to point_label_type=’SC’
are shown on the left, those corresponding to point_label type=’BI’ on the right.

1.8 ibrav=8, simple orthorhombic lattice

The primitive vectors of the direct lattice are:

a, = a(1,0,0),

b
= 0,—,0
as CL( 7a7 )7
c
= 0,0, -
ag (l( 9 7a>7
while the reciprocal lattice vectors are:
27
b, = —(1,0,0
1 a ( ) Yy )’
2T a
b, = —(0,-,0
2 a ( 7b7 )7
2
by = —(0,0,%).
a c

The figure has been obtained with b/a = 1.2 and ¢/a = 1.5.
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1.9 ibrav=9, one-face centered orthorhombic lattice

The direct lattice vectors are:
a b
a; = 5(17 ) 0)7
Ay = 5(_1a_70)7
= 07 07 -
as af a)

while the reciprocal lattice vectors are

2T, «a
b, = —(1,-,0
1 (I(,bv)’
2w a
by = —~(-1,%
2 CL( 7b70)7
2 a
bs; = —(0,0,-).
3 CL(,7C)

The figures have been obtained with b/a = 0.8 and ¢/a = 1.4 (left part b < a) and b/a = 1.2
and ¢/a = 1.4 (right part b > a).

1.10 ibrav=10, face centered orthorhombic lattice

The direct lattice vectors are:

a c
a; = 5(1,0,5),
a;, = 3(1,2,0),
ag = g(o,g,g).

while the reciprocal lattice vectors are

27 a a
= g

T, a a
= 05

T a a
by = ;(—1,6,2).

—_
o



In this case there are three different shapes that can be rotated in different ways depending
on the relative sizes of a, b, and c. If a is the shortest side, there are three different shapes

according to
1

a?

1 1
b2 ga (2)

if b is the shortest side there are three different shapes according to

VIIA
|
+

2> g2 2 (3)

+ = (4)

For each case there are two possibilities. If a is the shortest side, we can have b < c or b > ¢,
if b is the shortest side, we can have a < ¢ or a > ¢, and finally if ¢ is the shortest side we can
have a < b or a > b. In total we have 18 distinct cases. Not all cases give different BZ. All the
cases with the < sign in Egs. 2, 3, 4 give the same shape of the BZ that differ for the relative
sizes of the faces. All the cases with the > sign in Egs. 2, 3, 4 give the same shape with faces
of different sizes and oriented in different ways. Finally the particular case with the = sign in
Eqgs. 2, 3, 4 give another shape with faces of different size and different orientations. We show
all the 18 possibilities and the labels used in each case.

We start with the case in which a is the shortest side and show on the left the case b < ¢
and on the right the case b > c. The first possibility is that a% < b% + C%:

k:

The figures have been obtained with b/a = 1.2 and c¢/a = 1.4 (left part b < ¢), and with
b/a = 1.4 and ¢/a = 1.2 (right part b > ¢).
The second possibility is that a—lg = b% + ciz:
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k.
T
k-
T
Yy
ky

The figures have been obtained with b/a = 1.2 and ¢/a = 1.80906807 (left part b < ¢) and with
b/a = 1.80906807 and c¢/a = 1.2 (rlght part b>c).
The third possibility is that 2 > b2 +

k.
k
ky

The figures have been obtained with b/a = 1.2 and c¢/a = 2.4 (left part b < ¢), and with
b/a = 2.4 and ¢/a = 1.2 (right part b > ¢).

Then we consider the cases in which b is the shortest side and show on the left the case in
which a < ¢ and on the right the case a > c.

We have the same three possibilities as before. The first possibility is that = 2 < o2 L+

1.
c?
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¢ &

The figures have been obtained with b/a = 0.9 and ¢/a = 1.2 (left part a < ¢) and b/a = 0.75
and c¢/a = 0.95 (right part a > ¢).
The second possibility is that % = % %

&

The figures have been obtained with b/a = 0.8 and ¢/a = 1.33333333333 (left part a < ¢), and
b/a = 0.6 and c¢/a = 0.75 (right part a > c)
The third possibility is than ;- >

o ‘

1 .
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The figures have been obtained with b/a = 0.8 and ¢/a = 2.0 (left part a < ¢), and with
b/a = 0.4 and ¢/a = 0.5 (right part a > ¢).

Finally we consider the case in which c is the shortest side and show on the left the case in
which a < b and on the right the Case in which a > b.

The first possibility is that 12 <z 1

e

The figures have been obtained with b/a = 1.2 and ¢/a = 0.85 (left part a < b) and b/a = 0.85
and c¢/a = 0.75 (right part a > b).
The second possibility is that iz = % + lz

X

The figures have been obtained with b/a = 1.333333333 and ¢/a = 0.8 (left part a < b) and
with b/a = 0.66 and ¢/a = 0.5508422 (right part a > b).
Finally the third possibility is that C% > a% + b%:
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The figures have been obtained with b/a = 2.0 and ¢/a = 0.8 (left part a < b), and b/a = 0.5
and ¢/a = 0.4 (right part a > b).

1.11 ibrav=11, body centered orthorhombic lattice

The direct lattice vectors are:

a.. b c
= — 1 —_ =
ax 2( 7a7a>7
a b ¢
= — —1 _ =
ag 2( 7a>a)7
a b ¢
= —(=1,——, ).
ag 2( ) CL,G/)

while the reciprocal lattice vectors are:

2m a
b, = —(1,0,-
1 (1,(7070)’
2 a
by = —(-1,%,0
2 CI,( aba )7
2m a a
by = —(0,——, 9.
3 a(oa buc)

In this case the BZ has one shape that can be rotated in different ways depending on the
relative sizes of a, b, and c¢. Similar orientations and BZ that differ only for the relative sizes
of the faces are obtained for the cases that have in common the longest side. Therefore we
distinguish the cases in which a is the longest side and b < ¢ or b > ¢, the cases in which b is
the longest side and a < ¢ or a > ¢ and the cases in which ¢ is the longest side and a < b or
a > b. We have 6 distinct cases.

First we take a as the longest side and show on the left the case b < ¢ and on the right the
case b > c:
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X

The figures have been obtained with b/a = 0.7 and ¢/a = 0.85 (left part b < ¢) and b/a = 0.85
and c¢/a = 0.7 (right part b > ¢).

Then we take b as the longest side and show on the left the case in which a < ¢ and on the
right the case in which a > ¢:

oo

The figures have been obtained with b/a = 1.4 and ¢/a = 1.2 (left part a < ¢) and b/a = 1.2
and c¢/a = 0.8 (right part a > ¢).

Finally we take ¢ as the longest side and show on the left the case in which a < b and on
the right the case in which b < a:
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The figures have been obtained with b/a = 1.2 and ¢/a = 1.4 (left part), and b/a = 0.8 and
¢/a = 1.2 (right part).

1.12 ibrav=12, simple monoclinic lattice, ¢ unique

The direct lattice vectors are:

a; = a(l,0,0),
b b

a; = a(—cosv,—sin~,0),
a a

C
= 0,0,-).
as CL(, ’(1,)

while the reciprocal lattice vectors are:

2
b1 = _7T(1 _0987’0)7
a sin 7y
27 a
b, = — 0
2 a( "bsiny’ )
2
by = —(0,0,%)
The Brillouin zone is:
k.

The figure has been obtained with b/a = 0.8, ¢/a = 1.4 and cosy = 0.3.

17



1.13 ibrav=-12, simple monoclinic lattice, b unique
The direct lattice vectors are:

a; = (1(1,0,0),

= 0 _aO 5
a2 a( "a )
az; = oz(E cos 3,0, € sin B),
a a

while the reciprocal lattice vectors are:

2m cos 3

b, = —_
! a (1,0, sin 3 )
2T a
b, = —(0,-.,0
2 a ( ) b ) )7
2T a
b; = — .
The Brillouin zone is:
k.

The figure has been obtained with b/a = 0.8, ¢/a = 1.4 and cos § = 0.3.

1.14 ibrav=13, 14, one-base centered monoclinic, triclinic

These lattices are not supported by this feature, you have to give explicitly the coordinates of
the path.
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