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1 Introduction
This guide covers the usage of the CP package, a core component of the Quantum ESPRESSO distri-
bution. Further documentation, beyond what is provided in this guide, can be found in the directory
CPV/Doc/, containing a copy of this guide.

This guide assumes that you know the physics that CP describes and the methods it implements. A
good reference for the topic is the book D, Marx and J. Hutter, “Ab Initio Molecular Dynamics” It also
assumes that you have already installed, or know how to install, Quantum ESPRESSO. If not, please
read the general User’s Guide for Quantum ESPRESSO, found in directory Doc/ two levels above the
one containing this guide; or consult the web site: www.quantum-espresso.org.

People who want to modify or contribute to CP should read the Developer Manual: gitlab.com/QEF/q-
e/-/wikis/home.

CP can perform Car-Parrinello molecular dynamics, including variable-cell dynamics. The CP package
is based on the original code written by Roberto Car and Michele Parrinello. CP was developed by
Alfredo Pasquarello (EPF Lausanne), Kari Laasonen (Oulu), Andrea Trave, Roberto Car (Princeton),
Nicola Marzari (EPF Lausanne), Paolo Giannozzi, and others. FPMD, later merged with CP, was
developed by Carlo Cavazzoni (Leonardo), Gerardo Ballabio (CINECA), Sandro Scandolo (ICTP),
Guido Chiarotti, Paolo Focher, and others. We quote in particular:

• Sergio Orlandini (CINECA) for completing the CUDA Fortran acceleration started by Carlo
Cavazzoni

• Fabio Affinito and Mariella Ippolito (CINECA) for testing and benchmarking

• Ivan Carnimeo and Pietro Delugas (SISSA) for further openACC acceleration

• Riccardo Bertossa (SISSA) for extensive refactoring of ensemble dynamics / conjugate gradient
part, contributions to the documentation

• Federico Grasselli and Riccardo Bertossa (SISSA) for bug fixes, extensions to Autopilot;

• Biswajit Santra, Hsin-Yu Ko, Marcus Calegari Andrade (Princeton) for various contribution,
notably the SCAN functional;

• Robert DiStasio (Cornell), Biswajit Santra, and Hsin-Yu Ko for hybrid functionals with MLWF;
(maximally localized Wannier functions);

• Manu Sharma (Princeton) and Yudong Wu (Princeton) for dynamics with MLWF;

• Paolo Umari (Univ. Padua) for finite electric fields and conjugate gradients;

• Paolo Umari and Ismaila Dabo (Penn State) for ensemble-DFT;

• Xiaofei Wang (Princeton) for META-GGA;

• The Autopilot feature was implemented by Targacept, Inc.

The original version of this guide was mostly written by Gerardo Ballabio and Carlo Cavazzoni.

CP is free software, released under the GNU General Public License.
See www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution.

We shall greatly appreciate if scientific work done using the Quantum ESPRESSO distribution will
contain an acknowledgment to the following references:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.
L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N.
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Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia,
S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch,
J.Phys.: Condens.Matter 21, 395502 (2009)

and

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra,
R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso,
S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J Jia, M. Kawamura, H.-Y. Ko, A.
Kokalj, E. Küçükbenli, M .Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V.
Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M.
Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X.
Wu, S. Baroni, J.Phys.: Condens.Matter 29, 465901 (2017)

Users of the GPU-enabled version should also cite the following paper:

P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S.
de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S.
Baroni, J. Chem. Phys. 152, 154105 (2020)

Note the form Quantum ESPRESSO (in small caps) for textual citations of the code. Please also see
other package-specific documentation for further recommended citations. Pseudopotentials should be
cited as (for instance)

[ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.

2 Compilation
CP is included in the core Quantum ESPRESSO distribution. Instruction on how to install it can be
found in the general documentation (User’s Guide) for Quantum ESPRESSO.

Typing make cp from the main Quantum ESPRESSO directory or make from the CPV/ subdirectory
produces the following codes in CPV/src:

• cp.x: Car-Parrinello Molecular Dynamics code

• cppp.x: postprocessing code for cp.x. See Doc/INPUT_CPPP.* for input variables.

• wfdd.x: utility code for finding maximally localized Wannier functions using damped dynamics.

Symlinks to executable programs will be placed in the bin/ subdirectory.

As a final check that compilation was successful, you may want to run some or all of the tests and
examples. Automated tests for cp.x are in directory test-suite/ and can be run via the Makefile
found there. Please see the general User’s Guide for their setup.

You may take the tests and examples distributed with CP as templates for writing your own input files.
Input files for tests are contained in subdirectories test-suite/cp_* with file type *.in1, *.in2, ... .
Input files for examples are produced, if you run the examples, in the results/ subdirectories, with
names ending with .in.

For general information on parallelism and how to run in parallel execution, please see the general
User’s Guide. CP currently can take advantage of both MPI and OpenMP parallelization and on
GPU acceleration. The “plane-wave”, “linear-algebra” and “task-group” parallelization levels are im-
plemented.
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3 Input data
Input data for cp.x is organized into several namelists, followed by other fields (“cards”) introduced
by keywords. The namelists are:

&CONTROL: general variables controlling the run
&SYSTEM: structural information on the system under investigation
&ELECTRONS: electronic variables, electron dynamics
&IONS : ionic variables, ionic dynamics
&CELL (optional): variable-cell dynamics

The &CELL namelist may be omitted for fixed-cell calculations. This depends on the value of variable
calculation in namelist &CONTROL. Most variables in namelists have default values. Only he
following variables in &SYSTEM must always be specified:

ibrav (integer) Bravais-lattice index
celldm (real, dimension 6) crystallographic constants
nat (integer) number of atoms in the unit cell
ntyp (integer) number of types of atoms in the unit cell
ecutwfc (real) kinetic energy cutoff (Ry) for wavefunctions

Explanations for the meaning of variables ibrav and celldm, as well as on alternative ways to input
structural data, are contained in files Doc/INPUT_CP.*. These files are the reference for input data
and describe a large number of other variables as well. Almost all variables have default values, which
may or may not fit your needs.

After the namelists, you have several fields (“cards”) introduced by keywords with self-explanatory
names:

ATOMIC_SPECIES
ATOMIC_POSITIONS
CELL_PARAMETERS (optional)
OCCUPATIONS (optional) AUTOPILOT (optional)

The keywords may be followed on the same line by an option. Unknown fields are ignored. See the
files mentioned above for details on the available “cards”.

Comment lines in namelists can be introduced by a ”!”, exactly as in fortran code. Comments lines in
“cards” can be introduced by either a “!” or a “#” character in the first position of a line.

3.1 Data files
The output data files are written in the directory specified by variable outdir, with names specified by
variable prefix (a string that is prepended to all file names, whose default value is prefix=’cp_$ndw’,
where ndw is an integer specified in input). In order to use the data on a different machine, you may
need to compile CP with HDF5 enabled.

The execution stops if you create a file prefix.EXIT either in the working directory (i.e. where the
program is executed), or in the outdir directory. Note that with some versions of MPI, the working
directory is the directory where the executable is! The advantage of this procedure is that all files are
properly closed, whereas just killing the process may leave data and output files in an unusable state.

The format of arrays containing charge density, potential, etc. is described in the developer manual.
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4 Output files
The cp.x code produces many output files, that together build up the trajectory.

You have a file for the positions, called prefix.pos, where prefix is defined in the input file, that is
formatted like:

10 0.00157227
0.48652245874924E+01 0.38015905345591E+01 0.37361508020082E+01
0.40077990926697E+01 0.59541011690914E+01 0.34691399577808E+01
0.43874410242643E+01 0.38553718662714E+01 0.59039702898524E+01
20 0.00641004
0.49677092782926E+01 0.38629427979469E+01 0.37777995137803E+01
0.42395189282719E+01 0.55766875434652E+01 0.31291744042209E+01
0.45445534106843E+01 0.36049553522533E+01 0.55864387532281E+01

where the first line contains the step number and elapsed time, in ps, at this step; the following lines
contain the positions, in Bohr radii, of all the atoms (3 in this examples), in the same order as in the
input file (since v6.6 – previously, atoms were sorted by type; the type must be deduced from the input
file). The same structure is repeated for the second step and so on. The printout is made every iprint
steps (10 in this case, so at step 10, 20, etc.). Note that the atomic coordinates are not wrapped into
the simulation cell, so it is possible that they lie outside it.

The velocities are written in a similar file named prefix.vel, where prefix is defined in the input
file, that is formatted like the .pos file. The units are the usual Hartree atomic units (note that the
velocities in the pw.x code are in Rydberg a.u. and differ by a factor 2).

The prefix.for file, formatted like the previous two, contains the computed forces, in Hartree atomic
units as well. It is written only if a molecular dynamics calculation is performed, or if tprnfor =
.true. is set in input.

In the prefix.str file you can find the stress tensor (with the ionic kinetic part included), in GPa.

The simulation cell is written in a file named prefix.cel with the same header as the previous
described files, and the cell matrix is then listed. NB: THE CELL MATRIX IN THE OUTPUT
IS TRANSPOSED that means that if you want to reuse it again for a new input file, you have to
pick the one that you find in prefix.cel and write in the input file after inverting rows and columns.
In the prefix.cel file you will find the cell vectors in the columns of the matrix.

The file prefix.evp has one line per printed step and contains some thermodynamics data. The first
line of the file names the columns:

# nfi time(ps) ekinc Tcell(K) Tion(K) etot enthal econs econt Volume
Pressure(GPa)

where: - ekinc is the electrons fictitious kinetic energy, 𝐾𝐸𝐿𝐸𝐶𝑇 𝑅𝑂𝑁𝑆 - enthal is the enthalpy,
𝐸𝐷𝐹𝑇 +𝑃 𝑉 - etot is the DFT (potential) energy of the system, 𝐸𝐷𝐹𝑇 - econs is a physically meaningful
constant of motion, 𝐸𝐷𝐹𝑇 + 𝐾𝑁𝑈𝐶𝐿𝐸𝐼 , in the limit of zero electronic fictitious mass - econt is the
constant of motion of the Lagrangian𝐸𝐷𝐹𝑇 + 𝐾𝐼𝑂𝑁𝑆 + 𝐾𝐸𝐿𝐸𝐶𝑇 𝑅𝑂𝑁𝑆 t. If the time step dt is small
enough this will be up to a very good precision a constant. It is not a physical quantity, since
𝐾𝐸𝐿𝐸𝐶𝑇 𝑅𝑂𝑁𝑆 has nothing to do with the quantum kinetic energy of the electrons.

5 Using CP
It is important to understand that a CP simulation is a sequence of different runs, some of them used
to ”prepare” the initial state of the system, and other performed to collect statistics, or to modify the
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state of the system itself, i.e. to modify the temperature or the pressure.

To prepare and run a CP simulation you should first of all define the system:

atomic positions
atomic velocities (can be zero, read from the input, sampled from Maxwell-Boltzmann)
system cell
pseudopotentials
cut-offs
number of electrons and bands (optional)
FFT grids (optional)

An example of input file (Benzene Molecule):

&control
title = 'Benzene Molecule',
calculation = 'cp',
restart_mode = 'from_scratch',
ndr = 51,
ndw = 51,
nstep = 100,
iprint = 10,
isave = 100,
tstress = .TRUE.,
tprnfor = .TRUE.,
dt = 5.0d0,
etot_conv_thr = 1.d-9,
ekin_conv_thr = 1.d-4,
prefix = 'c6h6',
pseudo_dir='/scratch/benzene/',
outdir='/scratch/benzene/Out/'

/
&system

ibrav = 14,
celldm(1) = 16.0,
celldm(2) = 1.0,
celldm(3) = 0.5,
celldm(4) = 0.0,
celldm(5) = 0.0,
celldm(6) = 0.0,
nat = 12,
ntyp = 2,
nbnd = 15,
ecutwfc = 40.0,
nr1b= 10, nr2b = 10, nr3b = 10,
input_dft = 'BLYP'

/
&electrons

emass = 400.d0,
emass_cutoff = 2.5d0,
electron_dynamics = 'sd'

/
&ions

ion_dynamics = 'none'
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/
&cell

cell_dynamics = 'none',
press = 0.0d0,

/
ATOMIC_SPECIES
C 12.0d0 c_blyp_gia.pp
H 1.00d0 h.ps
ATOMIC_POSITIONS (bohr)
C 2.6 0.0 0.0
C 1.3 -1.3 0.0
C -1.3 -1.3 0.0
C -2.6 0.0 0.0
C -1.3 1.3 0.0
C 1.3 1.3 0.0
H 4.4 0.0 0.0
H 2.2 -2.2 0.0
H -2.2 -2.2 0.0
H -4.4 0.0 0.0
H -2.2 2.2 0.0
H 2.2 2.2 0.0

You can find the description of the input variables in file Doc/INPUT_CP.*.

The best way to initialize and run the simulation is first doing a few steps of Born-Oppenheimer (BO)
molecular dynamics (MD) using the electron_dynamic = 'cg' input for minimizing the electronic
degrees of freedom each MD step, after sampling the ionic velocities from a Maxwell-Boltzmann dis-
tribution. Then usually you run a Nosé thermostat and/or a barostat to reach some temperature and
pressure that you choose. Then you can run in the microcanonical ensemble if needed. During the CP
MD you must check that the fake electronic kinetic energy does not increase too much, otherwise at
some point your simulation may become completely wrong.

5.1 Reaching the electronic ground state
The first run, when starting from scratch, is always an electronic minimization, with fixed ions and cell,
to bring the electronic system on the ground state (GS) relative to the starting atomic configuration.
This step is conceptually very similar to self-consistency in a pw.x run. The suggested method is to
use the electron_dynamics = ’cg’ to initialize the simulation.

Sometimes when you do not use the CG routine, a single run is not enough to reach the GS. In this
case, you need to re-run the electronic minimization stage. Use the input of the first run, changing
restart_mode = ’from_scratch’ to restart_mode = ’restart’.

NOTA BENE: Unless you are already experienced with the system you are studying or with the
internals of the code, you will usually need to tune some input parameters, like emass, dt, and cut-offs.
For this purpose, a few trial runs could be useful: you can perform short minimizations (say, 10 steps)
changing and adjusting these parameters to fit your needs. You can specify the degree of convergence
with these two thresholds:

etot_conv_thr: total energy difference between two consecutive steps
ekin_conv_thr: value of the fictitious kinetic energy of the electrons.

Usually we consider the system on the GS when ekin_conv_thr < 10−5. You could check the value
of the fictitious kinetic energy on the standard output (column EKINC).
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Different strategies are available to minimize electrons. You can choose among the following:

• conjugate gradient (CG): direct minimization of the energy functional electron_dynamics =
’cg’

• damped dynamics: electron_dynamics = ’damp’ and electron_damping = a number typically
ranging from 0.1 and 0.5.

• Steepest descent: electron_dynamics = ’sd’

The CG routine computes also the wavefunction time derivative in the parallel transport gauge. The
time derivative is performed by computing twice the ground state using the atomic positions at the
current timestep, and the atomic positions at the next timestep, that are computed by moving the
atoms with their atomic velocities. This procedure allows to start the dynamics with a wavefunction
velocity consistent with the atomic velocities. This usually results in a smoother start of the simulation.
An other advantage of this technique is that you can apply it also in the middle of the dynamics
introducing a much lower discontinuity in the trajectory than apply a minimization only and settings
again to zero the wavefunction velocity. All the other minimization routines in CP when called set
the wavefunction velocity to zero. At the moment the CG routine works only with the plane wave
parallelization scheme, both on CPU and GPU machines. It can run “on the fly” by using the autopilot
module.

See the input description to compute the optimal damping factor of the damped dynamics routine.
Steepest descent is also available but it is typically slower than damped dynamics and should be used
only to start the minimization.

Note that the CG routine is used also for doing a Born-Oppenheimer dynamic, or for using the ensemble
DFT molecular dynamics. For this reason the meaning of the input variable nstep is different. In the
CG minimization nstep is the number of ions dynamic step: the conjugate gradient algorithm stops
when the required accuracy is reached, and the maximum number of steps that the CG algorithm
performs is the input variable maxiter. In the damped dynamics and the steepest descent the nstep
input variable is the number of sd/damped dynamics steps performed to reach the ground state, and
ions usually are kept fixed.

5.2 Relax the system
If the input atomic positions are far from the equilibrium position you need to relax the system. Note
that you can consider to do that with the pw.x code that may be faster for this task. Keep in mind
that a recipe that works for every case does not exist, and it is impossible to predict what will happen
in an arbitrary system without running the simulation. The best approach is to try and see what
happens. Here we give some ideas on a possible approach to the simulation.

Once your system is in the GS, depending on how you have prepared the starting atomic configuration:

1. if you have set the atomic positions ”by hand” and/or from a classical code, check the forces on
atoms, and if they are large (∼ 0.1÷1.0 atomic units), you should perform an ionic minimization
or a few step of CG dynamic with a very small timestep to equilibrate a little the simulation,
otherwise the system could break up during the CP dynamics.

2. if you have taken the positions from a previous run or a previous ab-initio simulation, check the
forces, and if they are too small (∼ 10−4 atomic units), this means that atoms are already in
equilibrium positions and, even if left free, they will not move. You will need to set the atomic
velocities from input or let the code chose them by sampling a Maxwell-Boltzmann distribution
at a given temperature. An alternative approach is also to randomize a little bit the atomic
positions.

Let us consider case 1). Suppose that you decided to minimize the system with the cp.x code. There
are different strategies to relax the system in cp.x, but the most used are again steepest-descent or
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damped-dynamics for ions and electrons. You could also mix electronic and ionic minimization scheme
freely, i.e. ions in steepest-descent and electron in with conjugate-gradient.

• suppose we want to perform steepest-descent for ions. Then we should specify the following
section for ions:

&ions
ion_dynamics = 'sd'

/

Change also the ionic masses to accelerate the minimization:

ATOMIC_SPECIES
C 2.0d0 c_blyp_gia.pp
H 2.00d0 h.ps

while leaving other input parameters unchanged. Note that if the forces are really high (> 1.0
atomic units), you should always use steepest descent for the first (∼ 100 relaxation steps.

• As the system approaches the equilibrium positions, the steepest descent scheme slows down, so
is better to switch to damped dynamics:

&ions
ion_dynamics = 'damp',
ion_damping = 0.2,
ion_velocities = 'zero'

/

A value of ion_damping around 0.05 is good for many systems. It is also better to specify to
restart with zero ionic and electronic velocities, since we have changed the masses.

Change further the ionic masses to accelerate the minimization:

ATOMIC_SPECIES
C 0.1d0 c_blyp_gia.pp
H 0.1d0 h.ps

• when the system is really close to the equilibrium, the damped dynamics slow down too, especially
because, since we are moving electron and ions together, the ionic forces are not properly correct,
then it is often better to perform a ionic step every N electronic steps, or to move ions only when
electron are in their GS (within the chosen threshold). You can also use the CG dynamics for
the electrons, that take care of fully minimizing the electronic energy.

You can perform a ionic step every N electronic steps done with ‘sd’ or ‘damp’, by adding, in the
ionic section, the ion_nstepe parameter, then the &IONS namelist become as follows:

&ions
ion_dynamics = 'damp',
ion_damping = 0.2,
ion_velocities = 'zero',
ion_nstepe = 10

/

Then we specify in the &CONTROL namelist:

etot_conv_thr = 1.d-6,
ekin_conv_thr = 1.d-5,
forc_conv_thr = 1.d-3
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As a result, the code checks every 10 electronic steps whether the electronic system satisfies the
two thresholds etot_conv_thr, ekin_conv_thr: if it does, the ions are advanced by one step.
The process thus continues until the forces become smaller than forc_conv_thr.

Note that to fully relax the system you need many runs, and different strategies, that you
should mix and change in order to speed-up the convergence. This process is not automatic,
but is strongly based on experience, and trial and error. For this reason we suggest to use the
CG minimization algorithm, that simplifies the process and usually works well, at least for the
electronic part of the problem.

Remember also that the convergence to the equilibrium positions depends on the energy threshold
for the electronic GS, in fact correct forces (required to move ions toward the minimum) are
obtained only when electrons are in their GS. Then a small threshold on forces could not be
satisfied, if you do not require an even smaller threshold on total energy.

A different approach is to use a small timestep and run the ion dynamic using ground states computed
with the CG routine. The system, given a small enough timestep and a big enough number of steps,
will thermalize at a defined temperature. Note that if the potential energy of the initial configuration
is too big the final temperature may be too large. To run some steps of Born-Oppenheimer (BO)
molecular dynamics you can set the following input variables:

&control
! ...
nstep = 100, ! number of MD steps. It has to be big enought
dt = 1.0d0, ! put a small number here...
! ...

/
!...
&electrons

electron_dynamics = 'cg'
/
!...
&ions
ion_dynamics = 'verlet' ! you also mix different approaches by changing

this to sd
/
!...

An additional feature of the code that you can use to perform the simulation initialization doing less
restarts is the autopilot module ( see the autopilot guide ). For example you can play with the timestep
while the simulation is running by writing a file called pilot.mb in the folder where the simulation is
running with the following content:

PILOT
NOW : DT = 0.5
NOW + 10 : DT = 1.0
NOW + 20 : DT = 5.0

ENDRULES

Let us now move to case 2.

If you have forces that are too small in your initial state, you can chose to initialize the simulation with
random initial atomic velocities. The input variables are ion_velocities = 'random' and tempw =
300.0 to sample from a 300K distribution. In this case the best approach is to perform the ground
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state calculation and the small initial thermalization in a single run by performing few steps of BO
dynamics using CG

&control
! ...
nstep = 50, ! number of MD steps. It has to be big enought
dt = 20.0d0, ! if the forces are small, you don't need a small

number...
! ...

/
!...
&electrons

electron_dynamics = 'cg'
/
!...
&ions
ion_dynamics = 'verlet' ! you also mix different approaches by changing

this to sd
ion_velocities = 'random'
tempw = 300.d0

/
!...

A different approach is to randomize the atomic positions, and set the ionic velocities to zero. If you
have relaxed the system or if the starting system is already in the equilibrium positions, then you need
to displace ions from the equilibrium positions, otherwise they will not move in a dynamics simulation.
After the randomization you should bring electrons on the GS again, in order to start a dynamic with
the correct forces and with electrons in the GS. Then you should switch off the ionic dynamics and
activate the randomization for each species, specifying the amplitude of the randomization itself. This
could be done with the following &IONS namelist:

&ions
ion_dynamics = 'none',
tranp(1) = .TRUE.,
tranp(2) = .TRUE.,
amprp(1) = 0.01
amprp(2) = 0.01

/

In this way a random displacement (of max 0.01 a.u.) is added to atoms of species 1 and 2. All other
input parameters could remain the same. Note that the difference in the total energy (etot) between
relaxed and randomized positions can be used to estimate the temperature that will be reached by
the system. In fact, starting with zero ionic velocities, all the difference is potential energy, but in a
dynamics simulation, the energy will be equipartitioned between kinetic and potential, then to estimate
the temperature take the difference in energy (de), convert it in Kelvin, divide for the number of atoms
and multiply by 2/3. Randomization could be useful also while we are relaxing the system, especially
when we suspect that the ions are in a local minimum or in an energy plateau.

5.3 CP dynamics
At this point after having:

1. minimized the electrons
2. a good initial configuration of the ionic degrees of freedom (good positions and velocities)
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3. optionally computed the initial wavefunction velocity with the CG routine

we are ready to start a CP dynamics.

The parameter specific to the CP method that you must choose very carefully is the electron fake
mass emass. The fake electron mass is the parameter that change how the wavefunctions follow the
minimum of the DFT energy during the dynamics. The smaller the better. In the limit where both
the fake mass and the timestep are zero we recover a perfect minimization of the wavefunction at each
timestep, but this would require an infinite amount of steps to simulate a trajectory of a given length
in time. So we need a compromise between efficiency and precision. You should always check that
the forces on the ions are well converged with respect to the emass parameter. What happens is that,
the bigger the fake electron mass, the bigger the systematic error that you have on the forces. The
error, intuitively, is related to the fact that the electrons have a finite classical mass, that is interacting
with the ions through the DFT potential, so they have an inertia that adds up to the mass of the ion,
slowing it down. This effect causes that, with a good approximation, the forces calculated with the CP
method, on average, are the true ground state forces time a factor between 0.0 and 1.0 that depends on
emass. You can correct the leading order of this error by changing the ionic mass by the same factor to
recover the same inertia of the atom+electron classical object. Remember also that static properties
of an equilibrium molecular dynamics simulation do not depend on the mass of the ions. So if only
static properties like radial distribution function or lattice parameters are needed this leading order
correction is not necessary, but it becomes important if you are computing, for example, a diffusion
coefficient. For a detailed analysis of this aspect of the theory see for example P. Tangney, “On the
theory underlying the Car-Parrinello method and the role of the fictitious mass parameter”(arXiv) or
the Marx and Hutter book.

In practice, you can safely use emass of about 50 atomic units without affecting the dynamical prop-
erties too much.

Keep in mind that the lower the emass the lower the integration timestep dt, because the electronic
degrees of freedom will move faster. You have to check that with your parameters the CP constant of
motion in the output is conserved with a good approximation.

To run the CP simulation you need to specify ’verlet’ both in ionic and electronic dynamics. The
threshold in control input section will be ignored, like any parameter related to minimization strategy.
To start the simulation you must use the restart from the previous step. Restore the proper masses for
the ions. In this way we will sample the microcanonical ensemble. If you did not use the CG routine
(that computes electron velocities), the input section changes as follow:

&electrons
emass = 50.d0,
emass_cutoff = 2.5d0,
electron_dynamics = 'verlet',
electron_velocities = 'zero' ! only if you did NOT use CG

/
&ions

ion_dynamics = 'verlet',
ion_velocities = 'zero' ! if you did NOT use CG!

/
ATOMIC_SPECIES
C 12.0d0 c_blyp_gia.pp
H 1.00d0 h.ps

If you used a method that computes the ionic velocities and the electronic velocities in a consistent
way you can use the following:
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&electrons
emass = 50.d0,
emass_cutoff = 2.5d0,
electron_dynamics = 'verlet',
electron_velocities = 'default' ! if you have wfc velocities

/
&ions

ion_dynamics = 'verlet',
ion_velocities = 'default' ! if you have velocities

/
ATOMIC_SPECIES
C 12.0d0 c_blyp_gia.pp
H 1.00d0 h.ps

If you want to change the timestep, for example because you used a big timestep in a small CG
thermalization performed in the relaxation step, you must specify the following additional parameters:

&control
dt = 5.0d0, ! new integration timestep

/
&electrons

electron_velocities = 'change_step' ! if you have wfc velocities
/
&ions

ion_velocities = 'change_step' ! if you have velocities
tolp = 20.d0 ! old integration timestep

/

If you want to specify a new set of initial velocities for ions, you have to set ion_velocities
=’from_input’, and add the ATOMIC_VELOCITIES card, after the ATOMIC_POSITION card,
with the list of velocities with time in atomic units, and length in the same units specified for the
atomic positions.

NOTA BENE: in restarting the dynamics after the first CP run, remember to remove or comment the
velocities parameters:

&electrons
emass = 50.d0,
emass_cutoff = 2.5d0,
electron_dynamics = 'verlet'
! electron_velocities = 'zero'

/
&ions

ion_dynamics = 'verlet'
! ion_velocities = 'zero'

/

otherwise you will quench the system interrupting the sampling of the microcanonical ensemble.

5.3.0.1 Varying the temperature It is possible to change the temperature of the system or to
sample the canonical ensemble fixing the average temperature, this is done using the Nosé thermostat.
To activate this thermostat for ions you have to specify in namelist &IONS:

&ions
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ion_dynamics = 'verlet',
ion_temperature = 'nose',
fnosep = 60.0,
tempw = 300.0

/

where fnosep is the frequency of the thermostat in THz, that should be chosen to be comparable with
the center of the vibrational spectrum of the system, in order to excite as many vibrational modes as
possible. tempw is the desired average temperature in Kelvin.

Note: to avoid a strong coupling between the Nosé thermostat and the system, proceed step by step.
Don’t switch on the thermostat from a completely relaxed configuration: adding a random displacement
is strongly recommended. Check which is the average temperature via a few steps of a microcanonical
simulation. Don’t increase the temperature too much. Finally switch on the thermostat. In the case
of molecular system, different modes have to be thermalized: it is better to use a chain of thermostat
or equivalently running different simulations with different frequencies.

5.3.0.2 Nośe thermostat for electrons It is possible to specify also the thermostat for the
electrons. This is usually activated in metals or in systems where we have a transfer of energy between
ionic and electronic degrees of freedom. Beware: the usage of electronic thermostats is quite delicate.
The following information comes from K. Kudin:

“The main issue is that there is usually some ”natural” fictitious kinetic energy that electrons gain
from the ionic motion (”drag”). One could easily quantify how much of the fictitious energy comes
from this drag by doing a CP run, then a couple of CG (same as BO) steps, and then going back to
CP. The fictitious electronic energy at the last CP restart will be purely due to the drag effect.”

“The thermostat on electrons will either try to overexcite the otherwise ”cold” electrons, or it will try
to take them down to an unnaturally cold state where their fictitious kinetic energy is even below what
would be just due pure drag. Neither of this is good.”

“I think the only workable regime with an electronic thermostat is a mild overexcitation of the electrons,
however, to do this one will need to know rather precisely what is the fictitious kinetic energy due to
the drag.”

5.4 Advanced usage
5.4.1 Autopilot features

For changing variables while the simulation is running see the autopilot guide

5.4.2 Self-interaction Correction

The self-interaction correction (SIC) included in the CP package is based on the Constrained Local-Spin-
Density approach proposed my F. Mauri and coworkers (M. D’Avezac et al. PRB 71, 205210 (2005)).
It was used for the first time in Quantum ESPRESSO by F. Baletto, C. Cavazzoni and S.Scandolo
(PRL 95, 176801 (2005)).

This approach is a simple and nice way to treat ONE, and only one, excess charge. It is moreover
necessary to check a priori that the spin-up and spin-down eigenvalues are not too different, for the
corresponding neutral system, working in the Local-Spin-Density Approximation (setting nspin = 2).
If these two conditions are satisfied and you are interest in charged systems, you can apply the SIC.
This approach is a on-the-fly method to correct the self-interaction with the excess charge with itself.

Briefly, both the Hartree and the XC part have been corrected to avoid the interaction of the excess
charge with itself.
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For example, for the Boron atoms, where we have an even number of electrons (valence electrons =
3), the parameters for working with the SIC are:

&system
nbnd= 2,
tot_magnetization=1,
sic_alpha = 1.d0,
sic_epsilon = 1.0d0,
sic = 'sic_mac',
force_pairing = .true.,

The two main parameters are:

force_pairing = .true., which forces the paired electrons to be the same;
sic=’sic_mac’, which instructs the code to use Mauri’s correction.

Warning: This approach has known problems for dissociation mechanism driven by excess electrons.

Comment 1: Two parameters, sic_alpha and sic_epsilon’, have been introduced following the
suggestion of M. Sprik (ICR(05)) to treat the radical (OH)-H2O. In any case, a complete ab-initio
approach is followed using sic_alpha=1, sic_epsilon=1.

Comment 2: When you apply this SIC scheme to a molecule or to an atom, which are neutral, remem-
ber to add the correction to the energy level as proposed by Landau: in a neutral system, subtract-
ing the self-interaction, the unpaired electron feels a charged system, even if using a compensating
positive background. For a cubic box, the correction term due to the Madelung energy is approx.
given by 1.4186/𝐿𝑏𝑜𝑥 − 1.047/(𝐿𝑏𝑜𝑥)3, where 𝐿𝑏𝑜𝑥 is the linear dimension of your box (=celldm(1)).
The Madelung coefficient is taken from I. Dabo et al. PRB 77, 115139 (2007). (info by F. Baletto,
francesca.baletto@kcl.ac.uk)

5.4.3 ensemble-DFT

The ensemble-DFT (eDFT) is a robust method to simulate the metals in the framework of “ab-initio”
molecular dynamics. It was introduced in 1997 by Marzari et al.

The specific subroutines for the eDFT are in CPV/src/ensemble_dft.f90 where you define all the
quantities of interest. The subroutine CPV/src/inner_loop_cold.f90 called by cg_sub.f90, control
the inner loop, and so the minimization of the free energy 𝐴 with respect to the occupation matrix.

To select a eDFT calculations, the user has to set:

calculation = 'cp'
occupations= 'ensemble'
tcg = .true.
passop= 0.3
maxiter = 250

to use the CG procedure. In the eDFT it is also the outer loop, where the energy is minimized with
respect to the wavefunction keeping fixed the occupation matrix. While the specific parameters for
the inner loop. Since eDFT was born to treat metals, keep in mind that we want to describe the
broadening of the occupations around the Fermi energy. Below the new parameters in the electrons
list, are listed.

• smearing: used to select the occupation distribution; there are two options: Fermi-Dirac smear-
ing=‘fd’, cold-smearing smearing=‘cs’ (recommended)

• degauss: is the electronic temperature; it controls the broadening of the occupation numbers
around the Fermi energy.
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• ninner: is the number of iterative cycles in the inner loop, done to minimize the free energy 𝐴
with respect the occupation numbers. The typical range is 2-8.

• conv_thr: is the threshold value to stop the search of the ‘minimum’ free energy.

• niter_cold_restart: controls the frequency at which a full iterative inner cycle is done. It is
in the range 1÷ ninner. It is a trick to speed up the calculation.

• lambda_cold: is the length step along the search line for the best value for 𝐴, when the iterative
cycle is not performed. The value is close to 0.03, smaller for large and complicated metallic
systems.

NOTE: degauss is in Hartree, while in PWscfis in Ry (!!!). The typical range is 0.01-0.02 Ha.

The input for an Al surface is:

&CONTROL
calculation = 'cp',
restart_mode = 'from_scratch',
nstep = 10,
iprint = 5,
isave = 5,
dt = 125.0d0,
prefix = 'Aluminum_surface',
pseudo_dir = '~/UPF/',
outdir = '/scratch/'
ndr=50
ndw=51
/
&SYSTEM
ibrav= 14,
celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0,
celldm(4)= 0.0d0, celldm(5)= 0.0d0, celldm(6)= 0.0d0,
nat= 96,
ntyp= 1,
nspin=1,
ecutwfc= 15,
nbnd=160,
input_dft = 'pbe'
occupations= 'ensemble',
smearing='cs',
degauss=0.018,
/
&ELECTRONS
orthogonalization = 'Gram-Schmidt',
startingwfc = 'random',
ampre = 0.02,
tcg = .true.,
passop= 0.3,
maxiter = 250,
emass_cutoff = 3.00,
conv_thr=1.d-6
n_inner = 2,
lambda_cold = 0.03,
niter_cold_restart = 2,
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/
&IONS
ion_dynamics = 'verlet',
ion_temperature = 'nose'
fnosep = 4.0d0,
tempw = 500.d0
/
ATOMIC_SPECIES
Al 26.89 Al.pbe.UPF

NOTA1 remember that the time step is to integrate the ionic dynamics, so you can choose something
in the range of 1-5 fs.
NOTA2 with eDFT you are simulating metals or systems for which the occupation number is also
fractional, so the number of band, nbnd, has to be chosen such as to have some empty states. As a
rule of thumb, start with an initial occupation number of about 1.6-1.8 (the more bands you consider,
the more the calculation is accurate, but it also takes longer. The CPU time scales almost linearly
with the number of bands.)
NOTA3 the parameter emass_cutoff is used in the preconditioning and it has a completely different
meaning with respect to plain CP. It ranges between 4 and 7.

All the other parameters have the same meaning in the usual CP input, and they are discussed above.

5.4.4 Treatment of USPPs

The cutoff ecutrho defines the resolution on the real space FFT mesh (as expressed by nr1, nr2 and
nr3, that the code left on its own sets automatically). In the USPP case we refer to this mesh as the
”hard” mesh, since it is denser than the smooth mesh that is needed to represent the square of the
non-norm-conserving wavefunctions.

On this ”hard”, fine-spaced mesh, you need to determine the size of the cube that will encompass the
largest of the augmentation charges - this is what nr1b, nr2b, nr3b are. hey are independent of the
system size, but dependent on the size of the augmentation charge (an atomic property that doesn’t
vary that much for different systems) and on the real-space resolution needed by augmentation charges
(rule of thumb: ecutrho is between 6 and 12 times ecutwfc).

The small boxes should be set as small as possible, but large enough to contain the core of the largest
element in your system. The formula for estimating the box size is quite simple:

nr1b = 2𝑅𝑐/𝐿𝑥× nr1

and the like, where 𝑅𝑐𝑢𝑡 is largest cut-off radius among the various atom types present in the system,
𝐿𝑥 is the physical length of your box along the 𝑥 axis. You have to round your result to the nearest
larger integer. In practice, nr1b etc. are often in the region of 20-24-28; testing seems again a necessity.

The core charge is in principle finite only at the core region (as defined by some 𝑅𝑟𝑐𝑢𝑡 ) and vanishes
out side the core. Numerically the charge is represented in a Fourier series which may give rise to
small charge oscillations outside the core and even to negative charge density, but only if the cut-off is
too low. Having these small boxes removes the charge oscillations problem (at least outside the box)
and also offers some numerical advantages in going to higher cut-offs.” (info by Nicola Marzari)

5.4.5 Hybrid functional calculations using maximally localized Wannier functions

In this section, we illustrate some guidelines to perform exact exchange (EXX) calculations using
Wannier functions efficiently.

The references for this algorithm are:
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• Theory: X. Wu , A. Selloni, and R. Car, Phys. Rev. B 79, 085102 (2009).

• Implementation: H.-Y. Ko, B. Santra, R. A. DiStasio, L. Kong, Z. Li, X. Wu, and R. Car, arxiv.

The parallelization scheme in this algorithm is based upon the number of electronic states. In the
current implementation, there are certain restrictions on the choice of the number of MPI tasks. Also
slightly different algorithms are employed depending on whether the number of MPI tasks used in the
calculation are greater or less than the number of electronic states. We highly recommend users to
follow the notes below. This algorithm can be used most efficiently if the numbers of electronic states
are uniformly distributed over the number of MPI tasks. For a system having N electronic states the
optimum numbers of MPI tasks (nproc) are the following:

• In case of nproc ≤ N, the optimum choices are N/m, where m is any positive integer.

– Robustness: Can be used for odd and even number of electronic states.

– OpenMP threads: Can be used.

– Taskgroup: Only the default value of the task group (-ntg 1) is allowed.

• In case of nproc > N, the optimum choices are N*m, where m is any positive integer.

– Robustness: Can be used for even number of electronic states.

– Largest value of m: As long as nj_max (see output) is greater than 1, however beyond m=8
the scaling may become poor. The scaling should be tested by users.

– OpenMP threads: Can be used and highly recommended. We have tested number of threads
starting from 2 up to 64. More threads are also allowed. For very large calculations (nproc
> 1000 ) efficiency can largely depend on the computer architecture and the balance be-
tween the MPI tasks and the OpenMP threads. User should test for an optimal balance.
Reasonably good scaling can be achieved by using m=6-8 and OpenMP threads=2-16.

– Taskgroup: Can be greater than 1 and users should choose the largest possible value for ntg.
To estimate ntg, find the value of nr3x in the output and compute nproc/nr3x and take
the integer value. We have tested the value of ntg as 2𝑚, where m is any positive integer.
Other values of ntg should be used with caution.

– Ndiag: Use -ndiag X option in the execution of cp.x. Without this option jobs may crash
on certain architectures. Set X to any perfect square number which is equal to or less than
N.

• DEBUG: The EXX calculations always work when number of MPI tasks = number of electronic
states. In case of any uncertainty, the EXX energy computed using different numbers of MPI
tasks can be checked by performing test calculations using number of MPI tasks = number of
electronic states.

An example input is listed as following:

&CONTROL
calculation = 'cp-wf',
title = "(H2O)32 Molecule: electron minimization PBE0",
restart_mode = "from_scratch",
pseudo_dir = './',
outdir = './',
prefix = "water",
nstep = 220,
iprint = 100,
isave = 100,
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dt = 4.D0,
ekin_conv_thr = 1.D-5,
etot_conv_thr = 1.D-5,

/
&SYSTEM
ibrav = 1,
celldm(1) = 18.6655,
nat = 96,
ntyp = 2,
ecutwfc = 85.D0,
input_dft = 'pbe0',

/
&ELECTRONS
emass = 400.D0,
emass_cutoff = 3.D0,
ortho_eps = 1.D-8,
ortho_max = 300,
electron_dynamics = "damp",
electron_damping = 0.1D0,

/
&IONS
ion_dynamics = "none",

/
&WANNIER
nit = 60,
calwf = 3,
tolw = 1.D-6,
nsteps = 20,
adapt = .FALSE.
wfdt = 4.D0,
wf_q = 500,
wf_friction = 0.3D0,
exx_neigh = 60, ! exx related optional
exx_dis_cutoff = 8.0D0, ! exx related optional
exx_ps_rcut_self = 6.0D0, ! exx related optional
exx_ps_rcut_pair = 5.0D0, ! exx related optional
exx_me_rcut_self = 9.3D0, ! exx related optional
exx_me_rcut_pair = 7.0D0, ! exx related optional
exx_poisson_eps = 1.D-6, ! exx related optional

/
ATOMIC_SPECIES
O 16.0D0 O_HSCV_PBE-1.0.UPF
H 2.0D0 H_HSCV_PBE-1.0.UPF

6 Parallel Performances
cp.x can run in principle on any number of processors. The effectiveness of parallelization is ultimately
judged by the “scaling”, i.e. how the time needed to perform a job scales with the number of processors.
Ideally one would like to have linear scaling, i.e. 𝑇 ∼ 𝑇0/𝑁𝑝 for 𝑁𝑝 processors, where 𝑇0 is the estimated
time for serial execution. In addition, one would like to have linear scaling of the RAM per processor:
𝑂𝑁 ∼ 𝑂0/𝑁𝑝, so that large-memory systems fit into the RAM of each processor.
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We refer to the “Parallelization” section of the general User’s Guide for a description of MPI and
OpenMP parallelization paradigms, of the various MPI parallelization levels, and on how to activate
them.

A judicious choice of the various levels of parallelization, together with the availability of suitable hard-
ware (e.g. fast communications) is fundamental to reach good performances._VERY IMPORTANT_:
For each system there is an optimal range of number of processors on which to run the job. A too
large number of processors or a bad parallelization style will yield performance degradation.

For CP with hybrid functionals, see the related section above this one. For all other cases, the relevant
MPI parallelization levels are:

• “plane waves” (PW);
• “tasks” (activated by command-line option -nt N);
• “linear algebra” (-nd N);
• “bands” parallelization (-nb N), to be used only in special cases;
• “images” parallelization (-ni N), used only in code manycp.x (see the header of CPV/src/manycp.f90

for documentation).

As a rule of thumb: - start with PW parallelization only (e.g. mpirun -np N cp.x ... with no
other parallelization options); the code will scale well unless N exceeds the third FFT dimensions
nr3 and/or nr3s. - To further increase the number of processors, use “task groups”, typically 4 to 8
(e.g. mpirun -np N cp.x -nt 8 ...). - Alternatively, or in addition, you may compile with OpenMP:
./configure --enable-openmp ..., then export OMP_NUM_THREADS=n and run on n threads (4 to
8 typically). Beware conflicts between MPI and OpenMP threads! don’t do this unless you know
what you are doing. - Finally, the optimal number of processors for ”linear-algebra” parallelization
can be found by observing the performances of ortho in the final time report for different numbers
of processors in the linear-algebra group (must be a square integer, not larger than the number of
processoris for plane-wave parallelization). Linear-algebra parallelization distributes 𝑀 × 𝑀 matrices,
with M number of bands, so it may be useful if memory-constrained.

Note: optimal serial performances are achieved when the data are as much as possible kept into the
cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks
to the increase in serial speed coming from the reduction of data size (making it easier for the machine
to keep data in the cache).
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