Quantum Espresso Tutorial

Hands-on Session #1 First steps with QE: total energy and relaxations

> Simone Piccinin CNR – Institute of Materials (IOM), Trieste (Italy) piccinin@iom.cnr.it

http://www.quantum-espresso.org/

QUANTUMESPRESSO

HOME PROJECT DOWNLOAD RESOURCES PSEUDOPOTENTIALS CONTACTS NEWS & EVENTS

SEARCH

Search here	2
	Forum

NEWS

06.02.13 PATCHES FOR QUANTUM ESPRESSO V.5.0.2

Patches for Quantum ESPRESSO v.5.0.2 (corrected on May 6) are available from the download page. Look for Release Name 5.0.3. Instructions here.

13.12.12 QUANTUM ESPRESSO EVENTS 2013

Hands-on Tutorial on Electronic Structure Computations, ICTP Trieste, 14-18 January.

Workshop on Computer Programming and Advanced Tools for Scientific Research Work & Quantum ESPRESSO Developer Training, ICTP Trieste, 11-28 March

troductory illustration, J. Phys. Chem. Lett. 2, 813 (2011). Courtesy of R. Gebauer.

QUANTUM ESPRESSO

is an integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.

READ MORE >

```
&control
  calculation = 'scf',
  prefix = 'Si_exc1',
&system
 ibrav = 2,
  celldm(1) = 10.26,
  nat = 2,
  ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```



```
&control
  calculation = 'scf',
  prefix = 'Si_exc1',
&system
  ibrav = 2,
 celldm(1) = 10.26,
  nat = 2,
  ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```


The Kohn-Sham problem

KS eqns:
$$\left[-\frac{1}{2}\nabla^2 + V_{nucl}(r) + V_H[n] + V_{xc}[n]\right]\Psi_i(r) = \epsilon_i\Psi_i(r)$$

SCF: $\Psi_i(r) \longrightarrow n(r) \longrightarrow H[n]$

Iterative solution of KS equations


```
&control
  calculation = 'scf',
  prefix = 'Si_exc1',
&system
 ibrav = 2,
  celldm(1) = 10.26,
  nat = 2,
  ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```


Iterative solution of KS equations

Periodic Boundary Conditions

Periodic system: lattice + basis


```
&control
  calculation = 'scf',
  prefix = 'Si_exc1',
&system
 ibrav = 2,
  celldm(1) = 10.26,
  nat = 2,
  ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```


fcc: v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)


```
&control
  calculation = 'scf',
  prefix = 'Si_exc1',
&system
 ibrav = 2,
  celldm(1) = 10.26,
  nat = 2,
  ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```


NB: If PP files are in a separate directory then specify: &control pseudo_dir='/where/my/pseudos/are'

Iterative solution of KS equations

Plane wave expansion

In a periodic system we can write the KS states as a superposition of plane waves:

$$\Psi_{\mathbf{k},n}(\mathbf{r}) = \frac{1}{\Omega} \sum_{G} c_{\mathbf{k},n}^{\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

G's are vectors in reciprocal space. The sum, in principle infinite, can be truncated:

$$\frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{G}|^2 \le E_{cut}$$

Plane wave expansion

In a periodic system we can write the KS states as a superposition of plane waves:

$$\Psi_{\mathbf{k},n}(\mathbf{r}) = \frac{1}{\Omega} \sum_{G} c_{\mathbf{k},n}^{\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

G's are vectors in reciprocal space. The sum, in principle infinite, can be truncated:

$$\frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{G}|^2 \le E_{cut}$$

Problems:

- 1) Core electrons are localized
- 2) Valence electrons have nodes close to the nucleus

An all-electron calculation would require high E_{cut}

Pseudopotentials: The choice of E_{cut} depends on the PP

Pseudopotentials

<PP INFO> Generated using Andrea Dal Corso code (rrkj3) Author: Andrea Dal Corso Generation date: unknown Info: Si PBE 3s2 3p2 RRKJ3 The Pseudo was generated with a Non-Relativistic Calculation 0 2.500000000E+00 Local Potential cutoff radius nlpn l occ Rcut Rcut US E pseu 3S 1 0 2.00 2.5000000000 2.600000000 0.000000000 3S 1 0 0.00 2.5000000000 2.6000000000 0.00000000000 3P 2 1 2.00 2,500000000 2,700000000 0.00000000000 3D 3 2 0.00 2.5000000000 2.5000000000 0.00000000000 </PP INFO> <PP HEADER> 0 Version Number Si Element NC Norm - Conserving pseudopotential F Nonlinear Core Correction SLA PW PBE PBE PBE Exchange-Correlation functional 4.0000000000 Z valence -7.47480832270 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 883 Number of points in mesh 23 Number of Wavefunctions, Number of Projectors Wavefunctions nLL occ 3S 0 2.00 3P 1 2.00 </PP HEADER> <PP MESH> <PP R> 1.77053726905E-04 1.79729551320E-04 1.82445815642E-04 1.85203131043E-04 1.88002117930E-04 1.90843406086E-04 1.93727634813E-04 1.96655453076E-04 1.99627519645E-04 2.02644503249E-04 2.05707082721E-04 2.08815947154E-04 2.11971796056E-04 2.15175339506E-04 2.18427298316E-04 2.21728404189E-04 2.25079399889E-04 2.28481039403E-04 2.31934088115E-04 2.35439322975E-04 2.38997532677E-04 2.42609517831E-04 2.46276091150E-04 2.49998077629E-04 •••

SEARCH

Search here	~
	Forum

PSEUDOPOTENTIALS

Admin PP Database

More about pseudopotentials

Naming convention for the pseudopotential

Unified Pseudopotential Format

PSEUDOPOTENTIALS

Ready-to-use pseudopotentials are available from the periodic table below. Choose the options you desire from the menus (pseudopotentials from PSlibrary are recommended), then press "Filter". Elements for which at least a pseudopotential is available will appear in red. Click on the element entry and follow the link to access the pseudopotentials and a minimal description of their characteristics.

More information about pseudopotentials in general, the naming convention adopted for pseudopotential files, the Unified Pseudopotential Format, and on other pseudopotential databases, can be found via the links of the menu at the left.

Important Note: although most of these pseudopotentials were published or used with satisfactory results in published work, we cannot give any warranty whatsoever that they fit your actual needs.

AN	Y FUN	ICTIONA	L	\$	ANY	TYP	E		4	ŧ	Appl	y Filte	r				
AN	Y PP I	IBRARY.		*	OTH	IER C	PTIO	NS	4	÷							
1 H																	2 He
3 Li	4 Be											5 E	6 3 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											1	3 14 AI S	i 15	16 S	17 CI	18 Ar
19 K	20 Ca		21 Sc	22 Ti	23 2 V	24 : Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 3 Zn (i 32 Ga G	: 33 ie A	34 s Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 4 Nb	12 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 4 Cd I	9 50 n S) 51 n Si	52 b Te	53	54 Xe
55 Cs	56 Ba	57-70 *	71 Lu	72 Hf	73 7 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 8 Hg 1	1 82 TI P	83 b B	84 i Po	85 At	86 Rn
87 Fr	88 Ra	89-102 **	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt								
* Lanti	hanoid	ls	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 S I	m	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
** Actir	noids		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pi	u	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No

http://www.qe-forge.org/gf/project/pslibrary/

ƏFORGE	Home My Stuff Projects Snippets 🔍 🕐		Log In Register New Account						
PSlibrary	Home » Projects » PSlibrary » Home								
Summary	PSlibrary is a library of inputs for the ld1.x atomic code. It allows the generation of PAW data sets, ultrasoft, and norm conserving pseudopotentials for many elements.		Activity						
>> Reporting			15						
>> Search	Recent News		10						
>> Forums	pslibrary.0.3.0 released Andrea Dal Corso								
>> Tracker	2012-10-31 pslibrary.0.3.0 has been released.								
>> Docs			⁰ ۵،۵۵۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶						
>> News									
>> Files	Time Activity Type	Ву	Request to join project						
>> Lists	2013-Apr-05 18:30:24 Commit: Added a file with the old PPs, removed from the main scripts. Added the Licence file	Andrea Dal	Description						
>> CVS	10.30.24 Commit, Added & the with the old FFS, removed from the main scripts, Added the decide file,	Corso	a library of inputs of the ld1.x code						
	18:25:34 Commit: The PPs of Nb, Sc, Sr, Tc, Y, Zr, TI seems to work. Moved from the tot script to the main distribution. Several other minor modifications. distri	Andrea Dal Corso	norm conserving, ultrasoft and PAW						
	2013-Apr-03		Developer Info						
	18:49:00 Commit: Further cleanup of the test scripts.	Andrea Dal Corso	alwaleed Ahmed Adlan						
	16:15:52 Commit: Cleanup of tests.	Andrea Dal	Andrea Dal Corso						
	2013-Apr-02	0130	Development Status: 3 - Alpha						
	18:01:14 Commit: Small change in previous commit.	Intended Audience: End Users/Desktop License: GNU General Public License (GPL)							
	17:31:11 Commit: Small change to script.	ommit: Small change to script.							
	16:46:37 Commit: Ti dataset slightly improved	Corso Andrea Dal							
		Corso							
	16:13:55 Commit: Added tests files for the alt and tot data sets.	Andrea Dal Corso							
	2013-Mar-29								
	18:37:00 Commit: Introduced some scripts for automatic tests of the PPs.	Andrea Dal Corso							
	2012-Oct-15								
	15:14:27 Commit: Added Pd and Ag with semicore 4s and 4p states among the alternative PPs.	Andrea Dal Corso							
	2012-Oct-08								
	16:30:19 Commit: A missing change in one of previous commit.								
	16:21:37 Commit: Added Ce data set (contributed by L. Paulatto).	Andrea Dal							

```
&control
 calculation = 'scf',
  prefix = 'Si_exc1',
&system
 ibrav = 2,
 celldm(1) = 10.26,
  nat = 2,
 ntyp = 1,
  ecutwfc = 20
&electrons
  mixing_beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```

Sampling of the Brillouin zone

Many quantities we need to compute involve an integral over the BZ:

$$\overline{A} = \frac{1}{\Omega_{BZ}} \int_{BZ} A(\mathbf{k}) d\mathbf{k}$$

An example is the electronic density $n(\mathbf{r})$:

$$n(\mathbf{r}) = \frac{1}{\Omega_{BZ}} \sum_{i} \int_{BZ} |\Psi_{i,\mathbf{k}}(\mathbf{r})|^2 f(\epsilon_{i,\mathbf{k}} - \epsilon_F) d\mathbf{k}$$

In practice the integral is discretized:

$$\frac{1}{\Omega_{BZ}} \int_{BZ} d\mathbf{k} \to \sum_{\mathbf{k}} \omega_{\mathbf{k}}$$

How do we choose the *k* points to include in the sum?

Sampling of the Brillouin zone

 b_{2} k_{1} k_{2} k_{3} BZ

- example: square 2D lattice
- 4x4 k-points grid (16 points)
- 3 inequivalent points (IBZ)
 - 4 x k₁ --> $\omega_1 = \frac{1}{4}$
 - 4 x k₂ --> $\omega_2 = \frac{1}{4}$
 - 8 x k₃ --> $\omega_3 = \frac{1}{2}$

$$\frac{1}{\Omega_{BZ}} \int_{BZ} A(\mathbf{k}) d\mathbf{k} \simeq \frac{1}{4} A(\mathbf{k_1}) + \frac{1}{4} A(\mathbf{k_2}) + \frac{1}{2} A(\mathbf{k_3})$$

 K_1

ΒZ

Sampling of the Brillouin zone

 σ : dimensions of energy, controls the broadening of the Fermi surface "smearing" of the Fermi surface

Iterative solution of KS equations

Iterative solution of KS equations

Iterative solution of KS equations

Iterative solution of KS equations

Mixing

Iterative solution of KS equations

Iterative solution of KS equations

Exercises

Read the instructions !!!

Exercise 1: bulk Si

- convergence of Etot w.r.t. plane waves cutoff (ecutwfc)
- convergence of Etot w.r.t. BZ sampling (K_POINTS)
- lattice constant

Exercise 2: bulk Al (metal!)

- convergence of Etot w.r.t. plane waves cutoff (ecutwfc)
- convergence of Etot w.r.t. BZ sampling (K_POINTS)
- lattice constant