
Developers’ Manual for PHonon (7.0)
(only partially updated)

Contents

1 Introduction 2
1.1 Who should read (and who should write) this guide 2
1.2 Who may read this guide but will not necessarily profit from it 2

2 General structure of ph.x 2

3 GRID parallelization and recover 5

4 Parallelization 8

5 Files produced by ph.x 8

6 The routines of the PHonon package 10

7 Suggestion for developers 22

8 File Formats 24

9 Bibliography 28

1

1 Introduction

Important notice: due to the lack of time and of manpower, this manual is only partially updated
and may contain outdated information.

1.1 Who should read (and who should write) this guide

The intended audience of this guide is everybody who wants to:

� know how the PHonon package works, including its internals;

� modify/customize/add/extend/improve/clean up the PHonon package;

� know how to read data produced by the PHonon package.

The same category of people should also write this guide, of course.

1.2 Who may read this guide but will not necessarily profit from it

People who want to know about the capabilities of the PHonon package.
People who want to know about the methods or the physics behind PHonon should read

first the relevant literature (some pointers in the User Guide and in the Bibliography).

2 General structure of ph.x

The behavior of the ph.x code is controlled by a set of flags. In a general run when all control
flags are .true. the phonon code computes the following quantities in the given order:

frequency q perturbations

polarizability iu gamma x,y,z

dielectric constant 0 gamma x,y,z

zeu 0 gamma x,y,z

electro optic coefficient 0 gamma x,y,x

raman tensor 0 gamma 3 x 3

dynamical matrix 0 all q all irreps

zue 0 gamma all irreps

electron phonon interactions 0 all q all irreps

zeu = Born effective charges as derivative of the forces,

zue = Born effective charges as derivative of the polarization

Two control flags associated to every calculated quantity allow to set/unset the calculation
of that quantity independently from the others. One of these flags is an input variable:

fpol, if .TRUE. computes the frequency dependent polarizability

epsil, if .TRUE. computes the dielectric constant

zeu, if .TRUE. computes eff. charges as induced forces

lraman, if .TRUE. computes the raman tensor

2

elop, if .TRUE. computes the el-optical coefficient

trans, if .TRUE. computes the dynamical matrix

zue, if .TRUE. computes eff. charges as induced polarization

elph if .TRUE. computes the electron phonon coupling

By default, only the trans flag is .true.. The second flag is described in the following
Section.

The phonon code contains three loops. The outer loop is over q points. The other two
loops are inside the q-point loop, but they are separate and carried out sequentially. There is
a loop over the frequencies that calculates the frequency dependent polarizabilities and a loop
over the irreducible representations (irreps). In addition to this there is the calculation of the
response to the electric field. The loop over the frequencies and the response to an electric field
are calculated only if q is the Γ point. The size of the loops over the frequencies and over q
points is controlled by input variables.

nfs ! number of frequencies

fiu(nfs) ! frequencies in Ry

nq1, nq2, nq3 ! the mesh of q points

or

xq ! the coordinates of a q point

start_q ! initial q to calculate

last_q ! last q to calculate

start_irr ! initial representation to calculate

last_irr ! last representation to calculate

The run can be controlled also in other two ways by the following input variables:

nat_todo ! the number of atoms to move

atomo(nat_todo) ! which atoms to move

or

modenum ! the response to a single mode

The first two options limit the calculation to the representations in which at least one of a set of
atoms (specified by atomo) moves. The second option calculates only the motion with respect
to one vibrational mode.

The flow of the code can be summarized as follows:

1) Read input and set the flags of the quantities to compute

1.1) Read all the quantities written by pw.x

1.2) Read the pseudopotential data

2) Decide what must be calculated.

2.1) If not already on disk, compute the grid of q points and

all the modes for all q points and save on disk (SD)

3

2.2) If image parallelization is requested divide the work among images

3) In a recover run check what is already available on the .xml files and

sets the appropriate done flags to .TRUE.

4) Start a main loop over the q points:

4.1) Compute all quantities that do not depend on the response of the system

4.2) Check if a band calculation is needed and do it.

NB: the following points are executed only when q is Gamma.

4.3) Start a loop on the frequencies

4.3.1) Compute the polarizability as a function of iu SD

4.4) Compute the response to an electric field

4.5) Compute epsilon and SD

4.6) Compute zeu and SD

4.7) Compute the electro-optic coefficient and SD

4.8) Compute the second order response to E

4.9) Compute Raman tensor and SD

END NB

5) Start a loop over the irreducible representation

5.1) Compute the response to an irreducible representation

5.1.1) Accumulate the contribution to electron-phonon SD

5.1.2) Accumulate the contribution to the dynamical matrix

5.1.3) Accumulate the contribution to zue

5.1.4) SD this contribution to the dynamical matrix and to zue

continue the loop 5) until all representations of the current q point

have been computed

6) diagonalize the dynamical matrix and SD (only if all representations of

this q have been computed)

7) Sum over k and bands the electron-phonon couplings to calculate gamma_mat

SD (only if all representations of this q have been computed)

8) continue the loop at point 4 until all q points have been computed

In more detail the quantities calculated by the phonon code and the routines where these
quantities are calculated are:

� 4.2.1) The polarization as a function of the complex frequency is a 3x3 real tensor for
each frequency: polar(3,3,nfs) (calculated in polariz). These quantities are presently
written on output.

� 4.5) The dielectric constant is a real 3x3 tensor: epsilon (calculated in dielec).

� 4.6) Zeu is a real array: zstareu(3,3,nat). The first index is the electric field, while
the other two indices give the atom that moves and the direction.

4

� The electro-optic tensor is a three indices tensor eloptns(3,3,3) that is calculated by
the routine el opt. It requires the response to the electric field perturbation.

� The raman tensor is a real array ramtns(3,3,3,nat) that gives the derivatives of the
dielectric constant when the atom nat moves. The third index give the direction of the
displacement. It requires the first and the second order response of the wavefunctions
with respect to the electric field perturbation. It is calculated by the routine raman mat.

� The dynamical matrix is a complex matrix of dimensions (3 * nat, 3 * nat). It is
calculated by three routines: dynmat0 computes the part that does not require the linear
response of the system. It has an ion-ion term, a term common to NC, US, and PAW
scheme and the nonlinear core correction term. The US and PAW schemes have additional
parts, one of them calculated inside dynmat0 with a call to addusdynmat, and another
part calculated in drho. There is then a contribution that requires the response of the
wavefunctions calculated in drhodv and drhodvloc which is common to the NC, US, and
PAW schemes. The latter two schemes have other contributions calculated in drhodvus.
This routine contains also the additional PAW term.

� 5.1.3 Zue is a real array: zstarue(3,nat,3). The first two indices give the atom that
moves and the direction, the third gives the electric field.

� The electron phonon coefficients are explained in the PHonon user guide. ph.x saves on
.xml files gq,ν(k, i, j) for all the modes of an irreducible representation. The coefficients
are saved for each k and for all the perturbations. Each irreducible representation is
contained in a different file (see below). Note that these quantities are gauge dependent,
so if you calculate them on different machines with the GRID parallelization, you can use
them only for gauge invariant quantities. Be very careful with it. (still at an experimental
stage).

All the quantities calculated by the phonon code are saved in the fildyn files with the
exception of the polarization as a function of the complex frequency that is written on output,
and of the electron phonon coefficients. The output of the code in the latter case is given by
the files a2Fq2r.#.#iq.

The charge density response to the electric field perturbations and to the atomic displace-
ments, or the change of the Kohn and Sham potential can be saved on disk giving appropriate
input variables. These quantities are saved on disk by solve e and solve linter.

3 GRID parallelization and recover

The ph.x code might start from scratch or recover an interrupted run. In a recover run
the input control flags are assumed to coincide with those used in the interrupted run. The
required quantities might be found in .xml recover files and do not need to be recalculated. If
the quantities are found on file the following flags become .TRUE..

done_fpol, if .TRUE. all frequency dependent polarizabilities are known

done_epsil, if .TRUE. the dielectric constant is known

done_start_zstar, if .TRUE. zstareu0 is known

done_zeu, if .TRUE. zeu is known

5

done_lraman, if .TRUE. the raman tensor is known

done_elop, if .TRUE. the electron-optical coefficient is known

done_zue, if .TRUE. zue is known

done_elph if .TRUE. the electron-phonon coupling coefficient is known

The variables that control the grid are:

comp_iq(nqs)=.TRUE. ! .FALSE. when this q is not computed in

! this run (controlled by start_q, last_q,

! or by the image controller)

comp_irr_iq(0:3*nat,nqs)=.TRUE. ! .FALSE. for the representations that are

! not calculated in this run.

! (controlled by start_q, last_q,

! start_irr, last_irr,

! or by the image controller)

comp_iu(nfs)=.TRUE. ! .FALSE. for the frequencies not calculated

! in this run.

These variables are set at the beginning of the run on the basis of the input and of the
number of images requested by the calculation. If this is a recover run some of these quantities
might be already available on file. The code checks what is already saved on files and sets the
corresponding flags:

done_iu(nfs)=.FALSE. ! .TRUE. when the polarization(iu) is available.

done_iq(nqs)=.FALSE. ! .TRUE. when the dyn. mat. and, if required, the

! electron-phonon coefficients at the q point

! have been calculated

done_bands(nqs)=.FALSE. ! .TRUE. when the bands for that q are already

! on disk

done_irr_iq(0:3*nat,nqs)=.FALSE. ! The representations that have been already

! calculated for each q are set .TRUE..

! The representation 0 is the part of the

! dynamical matrix computed by drho and

! dynmat0.

done_elph_iq(3*nat,nqs)=.FALSE. ! .TRUE. when the electron phonon coefficient

! for this irreducible representation and

! this q is available.

The phonon code might stop in the middle of a self-consistent linear response run, or while
it is computing the bands. This case is controlled by a single code that is read from the files

6

written on disk. This is an integer that tells where the code stopped. This code is used in
several points to avoid too many flags checks. Saved on disk in .xml file there is also a string.
The codes are the following:

7

! rec_code where_rec status description

!

! -1000 Nothing has been read. There is no recover file.

! -50 init_rep.. All displacement have been written on file.

! -40 phq_setup Only the displacements u have been read from file

! -30 phq_init u and dyn(0) read from file

! -25 solve_e_fp all previous. Stopped in solve_e_fpol. There

! should be a recover file.

! -20 solve_e all previous. Stopped within solve_e. There

! should be a recover file.

! -10 solve_e2 epsilon and zstareu are available if requested.

! Within solve_e2. There should be a recover file.

! 2 phescf all previous, raman tensor and elop tensor are

! available if required.

! 10 solve_linter all previous. Stopped within solve linter.

! Recover file should be present.

! 20 phqscf all previous dyn_rec(irr) and zstarue0_rec(irr) are

! available.

! 30 dynmatrix all previous, dyn and zstarue are available.

!

4 Parallelization

The PHonon package uses the same parallelization mechanisms of the Quantum ESPRESSO
package. See the Developer manual in the Doc directory two levels above this one for more
information. It is parallelized on plane-waves, pools, bands, and images. The -ortho flag is
not used. Scalapack routines are not used in the ph.x code.

Each tensor should be collected as soon as it is calculated and all processors must have
the same tensors. Please avoid to collect tensors in routines distant from where they are
calculated. There might be exception to this rule for efficiency, but please try not to abuse for
small arrays. Only collected quantities are saved on the .xml file, so they should not depend
on the parallelization level. Note that only ionode writes the .xml files, so you have different
xml files only for different images. The variables are then broadcasted to all processors in an
image.

5 Files produced by ph.x

The output files of the pw.x code are not modified by the ph.x code. Each image of ph.x

creates a new directory called outdir/ ph# where it writes its files. # is an integer equal
to 0 in a calculation with one image or to the image number when the -nimage flag is
used. There are two sets of files written by ph.x in the outdir/ ph# directories: unfor-
matted files containing internal arrays, and .xml files containing partial results or tensors.
The former are in outdir/ ph# if the input flag lqdir=.false., or in separate subdirec-
tories outdir/ ph#/prefix.q #iq, where #iq is the number of the q point. Note that if
lqdir=.false. (default is lqdir=elph) the disk occupation is reduced but the files of each q
point are rewritten by the following q so it is not possible to run an electron-phonon calculation

8

with trans=.false. and ldisp=.true. after generating the induced potentials for a mesh
of q points. The .xml files calculated by each image are in the outdir/ ph#/prefix.phsave

directory for all q-vectors and irreps calculated by that images. Before closing the image
calculation the content of all the outdir/ ph#/prefix.phsave directories are copied into
outdir/ ph0/prefix.phsave directory, so it is possible to recover the calculation without
using images. The ph.x code reads the output of pw.x from the outdir directory. The wave-
functions are in outdir/prefix.wfc files while information on the structure of the solid and
on the pw.x run are in the outdir/prefix.save directory. The wavefunctions are also in this
directory if pw.x was run with the wf collect=.true. flag. These files are not modified by
ph.x. At a finite q vector, ph.x runs its own instance of pw.x to compute the bands and saves
the results into the outdir/ ph#/prefix.q #iq directory (lqdir=.true.) or in outdir/ ph#.
The charge density is copied inside these directories before calculating the bands. The out-
put of pw.x is in files called outdir/ ph#/prefix.q #iq/prefix.wfc and in the directory
outdir/ ph#/prefix.q #iq/prefix.save (lqdir=.true.), or in outdir/ ph#/prefix.wfc

and in outdir/ ph#/prefix.save (lqdir=.false.). With lqdir=.false. ph.x saves in
outdir/ ph#/prefix.bar the non self-consistent part of the right hand side of the linear sys-
tem, in outdir/ ph#/prefix.dwf the change of the wavefunctions. The files outdir/ ph#/

prefix.igk contain the k + G lists as in the pw.x run. With US or PAW, files called
outdir/ ph#/prefix.prd contain the induced charge density, for all modes. Only the part
that does not depend on the perturbed wavefunctions is contained in these files. With electric
field perturbations there are also files called outdir/ ph#/prefix.com that contain Pcx|ψ〉 and
are needed for the calculation of the Born effective charges. The mixing routine saves its data
in files called outdir/ ph#/prefix.mixd. The status of ph.x is saved at each iteration in files
called outdir/ ph#/prefix.recover. These files can be used to recover the run. All these un-
formatted files are saved in outdir/ ph#/prefix.q #iq directory when lqdir=.true.. Using
the input flag reduce io=.true. these files can be kept in memory and saved only at the end
of the run if necessary.

In parallel calculations, previous files are split into several files that have a final number.
Each number labels the processor that wrote the file. There are as many files as processors per
image.

The files with the dynamical matrices are written in the directory in which ph.x is started
and are called fildyn#iq where #iq is the q-vector number in a dispersion calculation, or is
not added in a single-q calculation. Only one copy of this file is written in a parallel run. When
the -nimage option is used some of these files might be empty (if the corresponding q point
has been divided between two or more images). The results are collected running ph.x another
time (with recover=.true.) without images.

Moreover ph.x opens a directory called outdir/ ph#/prefix.phsave. This directory con-
tains the partial information on the calculation. These files can be used to recover a run also
when the recover file is corrupted. In the directory outdir/ ph#/prefix.phsave the files are
in .xml format. Note that this directory is always in outdir/ ph#/ also when lqdir=.true..
There are several files:

control ph.xml contains information on the flags that control what ph.x calculates. The
content of this file is used mainly for checking purposes. The code reads these flags in input
and does not need to reread them from file, but a recover run in which these flags change is
not allowed. control ph.xml contains also the mesh of q-vectors and their coordinates. This
file is written only in a non recovered calculation from the routine check initial status after
the creation of the q-vector mesh. It is read, if recover=.true., at the beginning of the run

9

by phq readin.
status run.xml contains information that tell ph.x at which point the code stopped. It has

information on the current q vector, the current frequency, and a recover code that tells ph.x if
it has to expect a recover file and which routine produced this recover file. status run.xml file
is rewritten each time the phonon code reaches a point from which a new recover is possible.
It is read, if recover=.true., at the beginning of the run by phq readin.

If some routine wrote it, tensors.xml contains the tensors that have been calculated.
Possible tensors are: dielectric constant, Born effective charges calculated as derivative of the
forces (EU), Born effective charges calculated as derivative of the polarization (UE), raman
tensor, electro-optic coefficient. This file is written by the routines that calculate the tensors.
It is read by the routine phq recover, if recover=.true. and the q vector is Γ.

If polariz wrote it, polariz.xml contains the frequency dependent polarizabilities for the
frequencies calculated so far. It is read by the routine phq recover, if recover=.true. and
the q vector is Γ.

patterns.#iq.xml are files written for each q vector (#iq is its number). They contain
the information on the displacement patterns that transform according to irreducible repre-
sentations of the small group of q: number of irreducible representations, their dimensions,
the displacement patterns and the name of the irreducible representation to which each mode
belongs. It is written in nonrecover runs by the routine init representations. It is read for
each q vector by phq setup. The routine reads the data of the file with iq=current iq.

dynmat.#iq.0.xml contains the part of the dynamical matrix calculated by dynmat0 that
does not depend on the perturbed wavefunctions. It is written by dynmat0 and read only in
recover runs by phq recover.

dynmat.#iq.#irr.xml contains the contribution to the dynamical matrix at the q vector
#iq of the representation #irr. Note that these files can be calculated independently even
on different machines and collected in a single directory (see the GRID example), but it is
necessary to calculate the patterns file in a single machine and send it to all the machine
where the calculation is run to be sure that all machines use the same displacement patterns.
When the files dynmat.#iq.#irr.xml are present for all #irr of a given #iq the dynamical
matrix for that q can be calculated. If all the #irr of a given symmetry for a given #iq are
present, the partial dynamical matrix that can be constructed with this information can be
diagonalized and the frequencies of the modes of that symmetry can be calculated (using the
ldiag=.true. flag). These files are written by phqscf after calculating the contribution of the
representation to the dynamical matrix by drhodv. They are read only in recover runs by the
routine phq recover.

elph.#iq.#irr.xml contains the contribution to the electron phonon coefficients at the q
vector #iq of the representation #irr. These files are written by elphel and contain the quan-
tities gqν(k, i, j) (see User Manual). They are read in recover runs by the routine phq recover.

6 The routines of the PHonon package

The routines of the PHonon package can be divided in groups of related task. There are high
level drivers that call the routines that do the actual work and low level routines that make a
single task. Note that the phonon code is tightly integrated in the QE package, so it uses the
routines provided by the Modules or by the PW/src directories. Only a brief comment on the
purpose and the use of the routines can be found here. More details might be written inside

10

the routines themselves. We report here the name of the file that contains the routines. Each
file might contain more than one routine. Unfortunately sometimes there is no correspondence
between the name of the file and the name of the routine. This is mainly for historical reasons.
We adopt the following convention: if the file and the routine contained inside have the same
name we report only the filename; if the file contains a single routine with a different name or
more than one routine, we report in parenthesis the routine name.

Modules that contain the variables used by ph.x:

phcom.f90 Almost all global variables are here.

elph.f90 Variables needed for the electron-phonon part.

ramanm.f90 Variables for Raman calculation.

Global variables allocation and deallocation. Note that some variables are allocated by
phq readin and by ph restart.

allocate_phq.f90 This is the main allocation routine in which almost

all global variables are allocated. It needs only the

dimensions defined in pw.x.

allocate_part.f90 Allocate quantities for the partial computation of

the dynamical matrix. It is called in phq_readin.

allocate_pert.f90 Allocate the symmetry matrices in the basis of the

modes. It needs the maximun number of perturbations.

deallocate_part.f90 Deallocate the variables allocated by allocate part.

deallocate_phq.f90 Deallocate all the ph.x variables allocated in

allocate_phq. The variables allocated in phq_readin

or ph_restart should be deallocated by destroy_status_run,

contained in ph_restart.

clean_pw_ph.f90 Clean all variables of pw.x and of ph.x. Used to

reinitialize the calculation at each q.

Starting point and main programs. The directory PHonon/PH contains seven executables
whose main programs are:

phonon.f90 This is the main program of ph.x

q2r.f90 This is the main program of q2r.x

matdyn.f90 This is the main program of matdyn.x

dynmat.f90 This is the main program of dynmat.x

fqha.f90 This is the main program for fqha.x

dvscf_q2r.f90 This is the main program for dvscf_q2r.x

postahc.f90 This is the main program for postahc.x

Reading input, pseudopotentials, and files written by pw.x:

phq_readin.f90 This is the routine that reads the input, the PP and

the punch file of pw.x.

bcast_ph_input.f90 This routine broadcasts the input variables to all

processors.

11

save_ph_input.f90 (save_ph_input_variables) A few input variables are

changed by the ph.x code and are saved by this routine.

(restore_ph_input_variables) this routine restores the

saved variables.

(clean_input_variables) deallocate the saved variables.

Check the initial status of the calculation and decide what has to be computed:

check_initial_status.f90 Tests the initial status of the calculation,

prepare or reads the mesh of q points and the

irreps, divide the work among images and creates

the necessary directories in outdir.

(image_q_irr) Divide the work among several images.

(collect_grid_files) Copy the files produced by images in

the .phsave directory of the image0.

check_if_partial_dyn.f90 Control partial calculations in phonon.

check_restart_recover.f90 Check if a restart or recover file is present

in the outdir directory

Note: in the following some of the listed routines are contained in folder LR Modules).
Routines that select the small group of q and other symmetry related quantities used by the
ph.x code:

set_small_group_of_q.f90 This is a driver that selects among the s matrices

those of the small group of q. Check if q-> -q+G symmetry

exists. If modenum > 0 removes also the symmetries that do not

send the mode in itself.

(smallg_q) do the actual work of selecting the s matrices.

mode_group.f90 Find the small group of q and of the mode (used with modenum)

smallgq.f90 (set_giq) Find the G vectors associated to each rotation: Sq=q+G.

Routines that manipulate or generate the irreducible representations, the q-point mesh and
all the preparatory stuff that is needed by the ph.x code:

q_points.f90 Generate the mesh of q vectors.

check_q_points_sym.f90 Check if the q point mesh is compatible with the fft

mesh used by q2r.x.

init_representations.f90 This is a driver that initialize all the irreps

for all q vectors. First it finds the small group of q

and then calls find_irrep for each q.

(initialize_grid_variables) This routine reads the irreps from file and

sets the variables that define the grid of q and irreps.

find_irrep.f90 Find the irreps of a given q calling set_irr or set_irr_nosym.

(find_irrep_sym) is a driver that allocate the symmetry matrices in

the basis of the modes and calls set_irr_sym to calculate

12

them.

random_matrix.f90 Generate the random matrix to calculate the irreps.

set_irr.f90 Call random_matrix to generate a random matrix and

symmetrize it. The eigenvectors are the irreps. Count their

degeneracy and if search_sym is true find their symmetry.

set_irr_nosym.f90 As set_irr in the case in which the system has no

symmetry or symmetry is not used.

set_irr_sym.f90 Calculate the rotation matrices on the irreps basis.

High level drivers that make the actual calculation:

prepare_q.f90 Decides if a given q has to be calculated and if it needs

the band calculation or just to open the k-point list.

initialize_ph.f90 Initialization driver. It calls the other initialization

routines one after the other: allocate_phq, phq_setup,

phq_recover, phq_summary, openfilq, and phq_init.

phq_setup.f90 Setup many quantities needed by the phonon. The

most significant are: the local+SCF potential, derivatives

of xc potential, using dmxc or similar functions and setup_dgc,

alpha_pv and occupated bands, rotation matrices on the

basis of the mode (calling find_irrep_sym), setup the gamma_gamma

tricks.

phq_init.f90 Setup more complex quantities that require the implementation

of more complex formula.

It is a driver that uses auxiliary routines:

set_drhoc, setlocq, dvanqq, drho, dynmat0. Moreover it computes

becp1, alphap, eprec.

phescf.f90 This is the main driver for the electric field perturbations.

It decides what to compute on the basis of the input flags.

It can compute polarization, epsilon, raman, and elop.

phqscf.f90 This is the main driver for the phonon perturbation. It has

a loop over the irreps at a given q. It calls solve_linter

to calculate the perturbed wavefunctions and potentials, drhodv

to update the dynamical matrix and add_zstar_ue to update the

zue effective charges.

Opening and closing files:

13

openfilq.f90 Open almost all files of the ph.x code.

close_phq.f90 Close the above files if opened.

Drivers that compute the band structure using the pw.x routines:

run_nscf.f90 This routine runs pw.x to calculate the bands. It calls

init_run, electrons, and punch. However the functionalities

of setup are provided by setup_nscf.

set_defaults_pw.f90 (setup_nscf)

This routine sets the input of pw.x with default values.

It sets the k point list.

Routines that compute quantities independent from the perturbed wavefunctions that are
used in the rest of the code (mainly US/PAW part). These routines are called by phq init:

dvanqq.f90 This routine computes four of the five integrals

of the augmentation functions and its derivatives with

derivatives of the local potential. Needed only in the US/PAW case.

drho.f90 This is a driver that computes the parts of the

induced charge density and of the dynamical matrix that

do not depend on the change of the wavefunctions. These

terms are present only in the US/PAW case.

It calls many of the following routines.

compute_becsum_ph.f90 This routine computes becsum.

compute_alphasum.f90 This routine computes alphasum.

compute_becalp.f90 Compute the product of vkb and psi_{k+q} or of the

derivative of vkb and psi_{k+q}

compute_drhous.f90 This is a driver that makes a loop over the k points

to accumulate, using incdrhous, the part of the induced

charge density due to the change of the orthogonality

constraint. All the modes are computed here. (US/PAW case only).

compute_drhous_nc.f90 As compute_drhous in the noncollinear/so case.

incdrhous.f90 Accumulate for a given k point and a given mode

the contribution to the induced charge density due to the

change of the orthogonality constraint.

incdrhous_nc.f90 As incdrhous in the noncollinear/so case.

compute_nldyn.f90 Computes the orthogonality term in the dynamical matrix.

Used only in the US/PAW case.

compute_weight.f90 Compute the composite weights for metals.

qdipol_cryst.f90 This routine computes the dipole moment of the augmentation

14

functions.

setlocq.f90 This routine computes the local potential at q+G.

compute_dvloc.f90 Computes the change of the local potential due to

a phonon perturbation.

setqmod.f90 Computes (q+G)**2

hdiag.f90 Computes the kinetic energy.

Lower level drivers that set up and solve the linear system to calculate the response of the
system to a perturbation:

solve_linter.f90 Driver to calculate the phonon perturbation.

solve_e.f90 Driver to calculate the static electric field perturbation.

solve_e_fpol.f90 Driver to calculate the electric field perturbation at

imaginary frequency.

solve_e2.f90 Driver for the electric field perturbation at second order.

solve_e_nscf.f90 A simplified version of solve_e in which the induced

self consistent potential is already known. This

routine is used in dhdrhopsi.f90.

Routines used by the above drivers to do their job. Some of these routines are used by all
drivers, others are specific for a given perturbation:

dvpsi_e.f90 Compute the right hand side of the linear system in

the electric field case (only non SCF part). It

uses commutator_Hx_psi.

commutator_Hx_psi.f90 Compute the commutator of the Hamiltonian with r.

dvpsi_e2.f90 Compute the right hand side of the linear system for

the second order perturbation in the electric field case.

dvqpsi_us.f90 Compute the right-hand side of the linear system in the

phonon case (Only non SCF part). It uses dvqpsi_us_only.

dvqpsi_us_only.f90 The part of dvqpsi due to the nonlocal potential.

cft_wave.f90 Wavefunction from real to reciprocal space and return.

apply_dpot.f90 Add the contribution of the change of the SCF potential

to the right-hand side of the linear system.

apply_dpot_mod.f90 A wrapper for apply_dpot.

adddvscf.f90 Add the additional US/PAW contributions to the right-hand

side of the linear system (phonon case).

adddvepsi_us.f90 As adddvscf for the electric field case.

orthogonalize.f90 Apply the projector on the valence bands to the right-hand

side of the linear system. Deal with both insulators and metals.

cgsolve_all.f90 Solve the linear system with an iterative conjugate gradient

method.

15

pcgreen.f90 Orthogonalize and solve the linear system. Used by

solve_e2 and solve_e_nscf instead of the more standard method.

Call cgsolve_all for doing the actual calculation.

gmressolve_all.f90 Solve the linear system in the case of

imaginary frequency polarizability calculation.

ch_psi_all.f90 Apply H+Q-eS to the wavefunctions. Used by the routine that

solves the linear system.

cch_psi_all.f90 As ch_psi_all for complex e. Used by gmresolve_all.

h_psiq.f90 Calculate h psi for k+q. Compute also S psi.

cg_psi.f90 Apply the preconditioning.

ccg_psi.f90 A complex preconditioning for gmresolve_all.

incdrhoscf.f90 Add the contribution of the computed set of perturbed

wavefunction at a given k and for a given perturbation

to the perturbed change density.

incdrhoscf_nc.f90 As incdrhoscf for the noncollinear/so case.

addusdbec.f90 Add the contribution of the computed set of perturbed

wavefunctions at a given k and for a given perturbation

to the change of the becsum.

addusdbec_nc.f90 As addusdbec for the noncollinear/spin-orbit case.

addusddens.f90 Add the US/PAW augmentation contribution to the change

of the charge density. (Phonon case)

addusddense.f90 Add the US/PAW augmentation contribution to the change

of the charge density. (Electric field case)

dv_of_drho.f90 Compute the change of the SCF potential given the change

of the SCF charge density.

mix_pot.f90 Mix input and output induced SCF potentials. In the

PAW case mixes also dbecsum.

newdq.f90 Integrate the augmentation function with the change of

the SCF potential (US/PAW case only). In the PAW case

add the PAW contribution to the change of the coefficients

of the nonlocal potential. The coefficients calculated

here are used by adddvscf (phonon case) and adddvepsi_us

(electric field case).

PW/src/paw_onecenter.f90:

(PAW_dpotential) Computes the change of the coefficients

on the nonlocal potential due to the perturbation

16

(Only PAW case).

ef_shift.f90 Accounts for the change of the Fermi level in metals at

the gamma point.

(ef_shift_paw) Account also for the change of dbecsum.

localdos.f90 Computes the local DOS.

addusldos.f90 US contribution to the local DOS.

Routines that calculate the derivative of the xc potential. Note that some of them are also
in Module/funct.f90:

setup_dgc.f90 Sets the derivative of the xc functionals needed to

calculate the change of the potential. It is called by

phq_setup.

d2mxc.f90 LDA second derivatives of the xc functional

dgradcorr.f90 Change of the GGA part of the xc potential.

compute_vsgga.f90 Additional GGA term present in the noncollinear/spin-orbit

case.

Routines that deal with the nonlinear core correction (NLCC):

set_drhoc.f90 Fourier transform of the core charge at q+G. Called by

phq_setup.

addcore.f90 Change of the core charge for a phonon perturbation.

Used by dv_of_drho and addnlcc.

dynmatcc.f90 NLCC contribution to the dynamical matrix independent from

the perturbed wavefunctions. Called by dynmat0.

addnlcc.f90 The nlcc part of the dynamical matrix that depends on the

perturbed potential. Called by solve_linter.

Frequency dependent polarizability:

polariz.f90 Computes the frequency dependent polarizability, given dpsi.

Dielectric tensor:

dielec.f90 Computes the dielectric tensor, given dpsi.

Born effective charges:

add_zstar_ue.f90 Add the contribution to zue due to dpsi induced by

a phonon

add_zstar_ue_us.f90 Add the US contribution to zue

zstar_eu.f90 Compute zeu from the dpsi induced by an electric field

zstar_eu_us.f90 Add the US/PAW contribution to zeu.

add_dkmds.f90 Additional terms for the US/PAW Born effective charges

psidspsi.f90 Calculate <psi_v’|ds/du|psi_v>

add_for_charges.f90 Calculate dS/du P_c [x, H-eS] |psi>

addnlcc_zstar_eu_us.f90 Add nlcc contribution to zeu

dvkb3.f90 Derivative of beta functions with respect to q and tau.

17

Raman tensor:

raman.f90 This is the main driver for the raman calculation. It

computes the second order response calling solve_e2 and

the right hand side calling dvpsi_e2.

raman_mat.f90 Computes and writes the raman tensor.

dhdrhopsi.f90 Computes Pc [DH,Drho] |psi>.

dielec_test.f90 Compute the dielectric constant with the quantities

calculated inside dhdrhopsi.

Electro-optic tensor:

el_opt.f90 Computes the electro-optic tensor.

Dynamical matrix:

dynmat0.f90 Driver for the part of the dynamical matrix independent

from the perturbation. It calls dynmatcc, d2ionq, and

dynmat_us. This routine is called by init_phq.

dynmat_us.f90 Expectation value of the second derivative of the

local and nonlocal potentials.

addusdynmat.f90 US/PAW contribution to the second derivative of

the potential. There are terms due to the change of the

augmentation function.

d2ionq.f90 Ewald contribution.

drhodv.f90 Contribution to the dynamical matrix due to the change

of the wavefunctions.

drhodvnl.f90 Accumulate the contribution to the dynamical matrix due

to the change of the wavefunctions (Only the contribution

of the nonlocal PP). Called at each k point.

drhodvloc.f90 As drhodvnl for the local potential. It can be calculated

as an integral of the potential and the induced charge

density.

drhodvus.f90 A term present only in the US/PAW case. Integral of the

induced SCF potential and the change of the charge at

fixed wavefunctions. It is called in solve_linter because

the induced potential is not available outside.

dynmatrix.f90 Is a driver that collects the dynamical matrix, checks if

all representations have been calculated, symmetrize the

dynamical matrix, computes the matrices rotated in all

equivalent q and diagonalizes the matrix. The same is

done for zue.

Electron-phonon coupling coefficients:

18

elphon.f90 This is a driver that in the case trans=.false. reads the

induced self-consistent potential and calculates the

electron-phonon matrix elements. It reads also the

dynamical matrix and diagonalizes it.

(readmat) read the dynamical matrix.

(elphel) compute the electron-phonon matrix elements.

(elphsum) make a sum over the BZ of the square moduli of the

el-ph matrix elements and compute phonon linewidths. This

routine makes a linear interpolation on k points

(still unsettled). Require compatibility between q and k

meshes.

(elphsum_simple) As elphsum but without the interpolation. It can be

used at arbitrary q.

el_ph_collect.f90 Collect the electron-phonon matrix elements among pools.

clinear.f90

ahc.f90 Calculate first- and second-order electron-phonon quantities

for the calculation of phonon-induced electron self-energy.

Routines that write the output quantities:

phq_summary.f90 Summarize what has been read from the pw output and

what has been calculated by phq_setup.

summarize.f90 Write the tensors on output.

(summarize_epsilon) write the dielectric tensor.

(summarize_zeu) write zeu.

(summarize_zue) write zue.

(summarize_elopt) write the electro-optic tensor.

(summarize_fpol) write the frequency dependent polarizability.

write_epsilon_and_zeu.f90 Use the routines of summarize, but contain also old

instructions to write the dielectric constant and

the Born effective charges in the dynamical matrix file.

write_modes.f90

(write_modes_out) This routine writes the modes on output. It is called

by set_irr and by phq_summarize.

write_qplot_data.f90 Write a file that can be read by plotband with

q vectors and phonon frequencies.

write_ramtns.f90 Write the raman tensor.

write_eigenvectors.f90 Used by matdyn to write the eigenvectors on output.

Writes the displacements in several format suited to some

molecular graphics programs.

19

Routines that write on file the induced charge densities:

punch_plot_e.f90 Write the change of the charge due to an electric field.

davcio_drho.f90 Write the change of the charge due to a phonon perturbation.

Routines that read or write the .xml files with the partial results:

ph_restart.f90 This file contains many routines to write and read the .xml

files that contain the partial results of ph.x. See the section

"file produced by ph.x".

(ph_writefile) This routine can be called from external routines to

write the tensors on file.

(ph_readfile) This routine can be called from external routines to

read the tensors from file.

(check_directory_phsave) This routine tries to read the files in the

phsave directory to check what has been already calculated.

(check_available_bands) This routine search on the outdir directory

for the bands files to see if they have been already

calculated.

(allocate_grid_variables) This routine allocates space for the variables

that control the grid calculation.

(destroy_status_run) This routine deallocates the variables that

control the grid and the variables allocated by phq_readin

or ph_restart.

io_dyn_mat.f90 This file contains the routines that read and write the

dynamical matrix in .xml format.

io_dyn_mat_old.f90 These are the routines that read and write the dynamical

matrix in the old format (not .xml).

Routines that read or write the recover file:

phq_recover.f90 This routine reads the recover files and reconstruct the

status of the calculation so far.

write_rec.f90 This file contains the routine that writes the

recover file (in unformatted form).

(read_rec) read the recover file.

Symmetrization of induced potentials:

symdvscf.f90 Symmetrize the change of the potentials due to a set of

perturbations that form an irreducible representation.

syme.f90 Symmetrize the change of potentials due to electric field

perturbations.

sym_dmag.f90 Symmetrize the change of B_xc due to a set

of phonon perturbations.

sym_dmage.f90 Symmetrize the change of B_xc due to a set of electric field

perturbations

syme2.f90 Symmetrize the potential of the second order response.

20

and parallel routines that collect on a single processor the quantity to symmetrize and call
the previous routines:

psymdvscf.f90 Parallel version of symdvscf.

psyme.f90 Parallel version of syme.

psym_dmag.f90 Parallel version of sym_dmag.

psym_dmage.f90 Parallel version of sym_dmage.

psyme2.f90 Parallel version of syme2.

Symmetrization of tensors or other quantities:

symdyn_munu.f90 Symmetrize a dynamical matrix on the basis of the modes,

transforming it in the cartesian basis and applying

symdynph_gq.

symdynph_gq.f90 Symmetrize a dynamical matrix written in cartesian coordinates.

star_q.f90 Given a q point finds all the q in its star.

q2qstar_ph.f90 Generate the dynamical matrix in all the q of the star.

rotate_and_add_dyn.f90 Rotate a dynamical matrix with a given symmetry

operation.

tra_write_matrix.f90 Symmetrize the dynamical matrix written in the basis

of the modes, brings it in cartesian form and write it.

trntnsc.f90 Transform a complex 2D tensor from the crystal basis to the

cartesian basis or vice-versa.

sym_def.f90 Symmetrize the change of the Fermi level due to the phonon

perturbations.

sym_and_write_zue.f90 Symmetrize zue.

symm.f90 Symmetrize the electron-phonon coefficients.

rotate_pattern_add.f90 These are a set of auxiliary routines that manipulate

the dynamical matrix in different forms. See the heading

of this matrix to see its capabilities.

Routines that perform the symmetry analysis of the eigenvectors to find to which irreducible
representation they belong:

prepare_sym_analysis.f90 Prepare the quantities for the symmetry analysis.

symmorphic_or_nzb.f90 A function that checks if symmetry analysis can be

carried out. It returns true if q is not at zone border

or if the group is symmorphic.

find_mode_sym.f90 Symmetry analysis of the modes.

Routines that apply the Clebsch Gordan coefficients for the spin-orbit part of the code:

transform_alphasum_nc.f90 Apply the coefficients to alphasum (no-so case)

transform_alphasum_so.f90 Apply the coefficients to alphasum (so case)

transform_dbecsum_nc.f90 Apply the coefficients to dbecsum (no-so case)

transform_dbecsum_so.f90 Apply the coefficients to dbecsum (so case)

transform_int_nc.f90 Apply the coefficients to the integrals (no-so case)

transform_int_so.f90 Apply the coefficients to the integrals (so case)

set_int12_nc.f90 This is a driver that call the previous routines

according to the type of PP.

21

Routines that apply the gamma gamma trick:

find_equiv_sites.f90

generate_dynamical_matrix_c.f90

generate_effective_charges_c.f90

set_asr_c.f90

Routine for the Fourier interpolation of the phonon potential:

dvscf_interpolate.f90

Miscellaneous routines:

print_clock_ph.f90 Print timings info.

stop_ph.f90 Stops the phonon code closing all the files.

rigid.f90 Used by matdyn and dynmat to compute the long range

electrostatic part of the dynamical matrix.

dyndia.f90 Diagonalizes the dynamical matrix.

Obsolete routines that are here for compatibility with other codes that might use them:

obsolete.f90

Development routines provided by some developers but still incomplete, or used in propri-
etary codes not yet in the QE distribution, or added and forgotten:

acfdtest.f90

read_wfc_rspace_and_fwfft.f90

dfile_autoname.f90

dfile_star.f90

rotate_dvscf_star.f90

q_points_wannier.f90

set_dvscf.f90

ep_matrix_element_wannier.f90

io_pattern.f90

cgsolve_all_imfreq.f90

q2qstar.f90

write_matrix.f90

chi_test.f90

7 Suggestion for developers

If you plan to add something to the PHonon package follow these simple rules:

� All quantities that do not require the perturbed wavefunctions, are calculated in setup or
by calling a separate routine in phq init.

� The quantities that require the perturbed wavefunctions due to an electric field are cal-
culated by a separate routine after solve e in the routine phescf.

22

� The quantities that require the perturbed wavefunctions due to an atomic displacement
are accumulated by calling a separate routine in phqscf after solve linter. NB: the
perturbed wavefunctions are saved in a file that is rewritten at each new irrep.

� After calculating a quantity, it has to be saved in the directory outdir in an .xml file, by
adding it to the list of variables in the routine write tensors (preferable), or by writing
a routine similar to write tensors that writes a separate file. The same quantity must
be read by read tensors or by writing a separate routine.

� If you introduce the calculation of a new quantity in the phonon code and save it in the
.xml file, please add also the associated flags that control the calculation: lquantity is
read in input and tells ph.x that that quantity must be calculated, done quantity tells
ph.x that that quantity was available in the .xml files and should not be recalculated,
comp quantity can be introduced if the quantity depends on q or on the frequency and
tells ph.x that that quantity must be calculated in this run. The image controller can
divide the work among images by setting the array comp quantity. At each q point and
at each frequency the quantity must be saved in the .xml file. Please update the image
controller to add the additional work that the calculation of your quantity involves and
make a single image calculate it or divide the work among different images.

� Please, try to avoid opening files inside routines. Files must be opened in openfilq and
closed in close phq.

� Global variables must be allocated in allocate phq, directly in the routine, or by calling
a separate routine that allocates all your new variables. The same variables must be
deallocated in deallocate phq, by a separate routine or by adding them to the list of
variables. Note that at each new q point these variables are deallocated and reallocated.

� Variables that control the grid should not be deallocated at each new q point must be
allocated in allocate grid variables and deallocated in destroy status run. A few
arrays that must be read from input are allocated in phq readin after reading their size
and deallocated in destroy status run.

� Preferably global variables are calculated by in a single routine and used by the other
routines. In particular routines are not allowed to modify:

– The variables calculated by pw.x.

– The modes.

– The variables that describe the symmetry of the small group of q.

– The variables that describe the response of the ultrasoft quantities (e.g. int1, int2,
..., alphasum, becsum, dpqq, etc.).

If you need to modify these quantities, please allocate new variables and copy the variables
of the phonon on them.

� If you want to establish a new recover point, add the appropriate rec code in the list
above. The point in which the code stopped is saved in prefix.phsave/status run.xml.

23

If you are searching for some interesting project to contribute to the PHonon package, please
read the header of phonon.f90 and implement some feature that is not yet ready. Ideally all
quantities should be at level [10], presently level [5] is still experimental and some quantities
are at level [1].

8 File Formats

PHonon recover file specifications:
Format name: QEXML

Format version: 1.4.0

The structure of the file status run.xml is:

<Root>

<STATUS_PH>

<STOPPED_IN>

<where_rec>

</STOPPED_IN>

<RECOVER_CODE>

<rec_code>

</RECOVER_CODE>

<CURRENT_Q>

<current_iq>

</CURRENT_Q>

<CURRENT_IU>

<current_iu>

</CURRENT_IU>

</STATUS_PH>

</Root>

The structure of the file control run.xml is:

<Root>

<HEADER>

<FORMAT>

<CREATOR>

</HEADER>

<CONTROL>

<DISPERSION_RUN>

<ldisp>

</DISPERSION_RUN>

<ELECTRIC_FIELD>

<epsil>

</ELECTRIC_FIELD>

<PHONON_RUN>

<trans>

</PHONON_RUN>

24

<ELECTRON_PHONON>

<elph>

</ELECTRON_PHONON>

<EFFECTIVE_CHARGE_EU>

<zeu>

</EFFECTIVE_CHARGE_EU>

<EFFECTIVE_CHARGE_PH>

<zue>

</EFFECTIVE_CHARGE_PH>

<RAMAN_TENSOR>

<lraman>

</RAMAN_TENSOR>

<ELECTRO_OPTIC>

<elop>

</ELECTRO_OPTIC>

<FREQUENCY_DEP_POL>

<fpol>

</FREQUENCY_DEP_POL>

</CONTROL>

<Q_POINTS>

<NUMBER_OF_Q_POINTS>

<nqs>

</NUMBER_OF_Q_POINTS>

<UNITS_FOR_Q-POINT>

<Q-POINT_COORDINATES>

<x_q(3,nqs)>

</Q-POINT_COORDINATES>

</Q_POINTS>

</Root>

The structure of the file tensors.xml is:

<Root>

<EF_TENSORS>

<DONE_ELECTRIC_FIELD>

<done_epsil>

</DONE_ELECTRIC_FIELD>

<DONE_START_EFFECTIVE_CHARGE>

<done_start_zstar>

</DONE_START_EFFECTIVE_CHARGE>

<DONE_EFFECTIVE_CHARGE_EU>

<done_zeu>

</DONE_EFFECTIVE_CHARGE_EU>

<DONE_EFFECTIVE_CHARGE_PH>

<done_zue>

</DONE_EFFECTIVE_CHARGE_PH>

<DONE_RAMAN_TENSOR>

25

<done_raman>

</DONE_RAMAN_TENSOR>

<DONE_ELECTRO_OPTIC>

<done_elop>

</DONE_ELECTRO_OPTIC>

<DIELECTRIC_CONSTANT>

<epsil>

</DIELECTRIC_CONSTANT>

<START_EFFECTIVE_CHARGES>

<zstareu0>

</START_EFFECTIVE_CHARGES>

<EFFECTIVE_CHARGES_EU>

<zstareu>

</EFFECTIVE_CHARGES_EU>

<RAMAN_TNS>

<ramantns>

</RAMAN_TNS>

<ELOP_TNS>

<eloptns>

</ELOP_TNS>

<EFFECTIVE_CHARGES_UE>

<zstarue>

</EFFECTIVE_CHARGES_UE>

</EF_TENSORS>

</Root>

The structure of the file patterns.#iq.xml is:

<Root>

<IRREPS_INFO>

<QPOINT_NUMBER>

<iq>

</QPOINT_NUMBER>

<QPOINT_GROUP_RANK>

<nsymq>

</QPOINT_GROUP_RANK>

<MINUS_Q_SYM>

<minus_q>

</MINUS_Q_SYM>

<NUMBER_IRR_REP>

<nirr>

</NUMBER_IRR_REP>

#for each irr

<REPRESENTION.irr>

<NUMBER_OF_PERTURBATIONS>

<npert(irr)>

</NUMBER_OF_PERTURBATIONS>

26

#for each ipert

<PERTURBATION.ipert>

<SYMMETRY_TYPE_CODE>

<num_rap_mode>

</SYMMETRY_TYPE_CODE>

<SYMMETRY_TYPE>

<name_rap_mode>

</SYMMETRY_TYPE>

<DISPLACEMENT_PATTERN>

<u>

</DISPLACEMENT_PATTERN>

</PERTURBATION.ipert>

</REPRESENTION.irr>

</IRREPS_INFO>

</Root>

The structure of the file dynmat.#iq.#irr.xml is:

<Root>

<PM_HEADER>

<DONE_IRR>

done_irr(irr)

</DONE_IRR>

</PM_HEADER>

<PARTIAL_MATRIX>

<PARTIAL_DYN>

<dynmat_rec>

</PARTIAL_DYN>

</PARTIAL_MATRIX>

</Root>

The structure of the file elph.#iq.#irr.xml is:

<Root>

<EL_PHON_HEADER>

<DONE_ELPH type="logical" size="1">

<done_elph_iq(irr,iq)>

</DONE_ELPH>

</EL_PHON_HEADER>

<PARTIAL_EL_PHON>

<NUMBER_OF_K>

<nksqtot>

</NUMBER_OF_K>

<NUMBER_OF_BANDS>

<nbnd>

</NUMBER_OF_BANDS>

#for each ik

<K_POINT.ik>

27

<COORDINATES_XK>

xk(ik)

</COORDINATES_XK>

<PARTIAL_ELPH>

el_ph_mat_rec_col

</PARTIAL_ELPH>

</K_POINT.ik>

#enddo

</PARTIAL_EL_PHON>

</Root>

</Root>

9 Bibliography

� Original idea and first implementation: S. Baroni, P. Giannozzi, and A. Testa, “Green’s-
function approach to linear response in solids” Phys. Rev. Lett. 58, 1861 (1987). P.
Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab initio calculation of phonon
dispersions in semiconductors” Phys. Rev. B 43, 7231 (1991).

� NC, phonon in metals: S. de Gironcoli, “Lattice dynamics of metals from density-
functional perturbation theory” Phys. Rev. B 51, 6773 (1995).

� General overview of DFPT: S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi
“Phonons and related properties of extended systems from density functional perturbation
theory”, Rev. Mod. Phys. 73, 515 (2001).

� NC, Raman tensor: Michele Lazzeri and Francesco Mauri, “High-order density-matrix
perturbation theory” Phys. Rev. B 68, 161101 (2003).

� GGA dynamical matrix: F. Favot and A. Dal Corso, “Phonon dispersions: Performance
of the GGA approximation”, Phys. Rev. B. 60, 11427 (1999).

� LSDA, spin-GGA dynamical matrix: A. Dal Corso and S. de Gironcoli, “Ab-initio phonon
dispersions of Fe and Ni”, Phys. Rev. B 62, 273 (2000).

� US-PPs dynamical matrix: A. Dal Corso “Density functional perturbation theory with
ultrasoft pseudopotentials”, Phys. Rev. B 64, 235118 (2001).

� US-PPs dielectric constant: J. Tóbik and A. Dal Corso, “Electric fields with ultrasoft
pseudo-potentials: applications to benzene and anthracene”, Jour. of Chem. Phys. 120,
9934 (2004).

� US-PPs + spin-orbit dynamical matrix: A. Dal Corso, “Density functional perturbation
theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: application
to fcc-Pt and fcc-Au”, Phys. Rev. B 76, 054308 (2007).

� PAW dynamical matrix: A. Dal Corso, “Density functional perturbation theory within
the projector augmented wave method”, Phys. Rev. B 81, 075123 (2010).

28

� NC, Electron-phonon interaction: F. Mauri, O. Zakharov, S. de Gironcoli, S. G. Louie,
and M. L. Cohen, “Phonon Softening and Superconductivity in Tellurium under Pressure”
Phys. Rev. Lett. 77, 1151 (1996).

� US-PPs, Electron-phonon interaction: M. Wierzbowska, S. de Gironcoli, P. Giannozzi,
“Origins of low- and high-pressure discontinuities of Tc in niobium” arXiv:cond-mat/0504077.

29

	Introduction
	Who should read (and who should write) this guide
	Who may read this guide but will not necessarily profit from it

	General structure of ph.x
	GRID parallelization and recover
	Parallelization
	Files produced by ph.x
	The routines of the PHonon package
	Suggestion for developers
	File Formats
	Bibliography

