GIPAW – Linear response in the presence of magnetic fields

Uwe Gerstmann
University of Paderborn, Germany

Davide Ceresoli
Emine Kucukbenli
Ari Parvo Seitsonen

Originally aimed to calculate NMR chemical shifts, later also the EPR electronic g-tensor, ...

Standard version: qe-gipaw-5.3.tar @ qe-forge
GIPAW – Linear Magnetic Response

Uwe Gerstmann
University of Paderborn, Germany

Davide Ceresoli
Emine Kucukbenli
Ari Parvo Seitsonen

Originally aimed to calculate NMR chemical shifts, later also the EPR electronic g-tensor, ...

Standard version: qe-gipaw-5.3.tar @ qe-forge
GIPAW – Linear Magnetic Response

Originally aimed to calculate **NMR chemical shifts**, later also the **EPR electronic g-tensor**, ...

GIPAW routines/pseudopotentials are also used for

- X-ray spectra (Xspectra): XANES, (XMCD)
- orbital magnetization, converse NMR-approach
- SOC including two component noncolinear scheme using scalar-relativistic GIPAW pseudos
Essential: \(B \)-field brings the phase of the wfc into play

\[
\tilde{\psi}_{n,k}(\mathbf{r}) \rightarrow e^{(ie/\hbar c)A_0(t)\cdot \mathbf{r}} \tilde{\psi}_{n,k}(\mathbf{r} - \mathbf{t})
\]

(to insure translational invariance within PBC)

The \textbf{PAW} augmentation scheme has to be extended in a \textbf{Gauge Including way}: \(\rightarrow \textbf{GIPAW} \)

\[
\tilde{O} = O + \sum_{ij} |\tilde{p}_i\rangle(\tilde{D}^{1}_{ij}[O] - \tilde{D}^{1}_{ij}[O])\langle \tilde{p}_j|
\]

\[
\tilde{D}^{1}_{ij}[O] = \langle \phi_i | e^{(-ie/\hbar c)A_0(\mathbf{R})\cdot \mathbf{r}} O e^{(ie/\hbar c)A_0(\mathbf{R})\cdot \mathbf{r}} | \phi_j \rangle
\]
Basic quantity for NMR (EPR): **(spin) currents** induced by the B-field

EPR:

\[g_{\mu\nu} = g_e \cdot \delta_{\mu\nu} + \frac{\alpha^2}{2S_{\text{eff}}} \left[\sum_{\sigma} \int \nabla V_{\text{eff}}^\sigma \times \vec{j}^{(1),\sigma}_{\mu}(\vec{r}) d^3r \right]_\nu \]

\[g_e = \begin{cases} 2.002 \, 319 \, 278 & \text{spin-currents} \\ \vec{j}^{(1),\sigma}_{\mu} : = & \text{spin-currents induced by } \vec{B} \end{cases} \]

\[\vec{j}^{(1),\mu}_{\sigma}(\vec{r}) = \sum_{\sigma} \text{Re} \left\langle \psi_{(0),0}^\sigma \right| \mathcal{J}^p G_{\sigma}^\sigma (\epsilon_o) \mathcal{H}_{(1)} \left| \psi_{(0),0}^\sigma \right\rangle - \frac{1}{2} n_{\sigma}(\vec{r}) \cdot B_0 \vec{e}_\mu \times \vec{r} = \left| \psi_{(1),\sigma}^\sigma \right\rangle \]

\[\Rightarrow \text{Green's function required} \]
Basic quantity for NMR (EPR): **(spin) currents** induced by the B-field

\[\text{NMR: } B_{\text{ind}}(r') = \ldots \frac{r'-r}{|r'-r|^3} \ldots \]

\[\text{EPR: } g_{\mu\nu} = g_e \cdot \delta_{\mu\nu} + \frac{\alpha^2}{2 S_{\text{eff}}} \left[\sum_\sigma \int \nabla V_{\text{eff}}^\sigma \times \vec{j}_{(1),\sigma}^\mu(\vec{r}) d^3 r \right]_{\nu} \]

\[g_e = 2.002 \ 319 \ 278 \ldots \]

Spin-currents induced by \(\vec{B} \)

\[\vec{j}_{(1),\mu}^\sigma(\vec{r}) = \sum_{\sigma} \text{Re} \left\langle \psi_{(0),\sigma} \left| J^\mu \ G^\sigma(\epsilon^\sigma_0) \ H_{(1)} \right| \psi_{(0),\sigma} \right\rangle \]

\[- \frac{1}{2} n^\sigma(\vec{r}) \cdot B_0 \vec{\epsilon}_\mu \times \vec{r} = \left| \psi_{(1),\sigma} \right\rangle \]

\(\Rightarrow \) Green’s function required
Central routine: `greenfunction.f90`

Green’s function@\(k+q \) to be applied on a modified version of the unperturbed wfc:

\[
G_{k+q} |\psi> = G_{k+q} \{ V_{k+q,k} |\text{evc}> \}; \quad q = \{0, \pm \Delta q \ e^i \text{ with } i=x,y,z\}
\]

Similar to `solve_linter.f90` in PH, it calls:

- `cgsolve_all.f90` iterative solver of linear systems
- `cg_psi.f90` for (simple) preconditioning (via diagonals of H),
- `ch_psi_all.f90` for application of H-eS+P_cv
- `orthogonalize.f90` for computing P_cv
- `(h_psi_q.f90` for BAND parallelization only;
 otherwise: `h_psi, calbec, s_psi`)
Central routine: greenfunction.f90

Green’s function@$k+q$ to be applied on a modified version of the unperturbed wfc:

$$G_{k+q} |\psi> = G_{k+q} \{ V_{k+q,k} |\text{evc}>\}; \quad q = \{0, \pm \Delta q e_i \text{ with } i=x,y,z\}$$

Similar to solve_linter.f90 in PH, it calls

cgsolve_all.f90 iterative solver of linear systems
cg_psi.f90 for (simple) preconditioning (via diagonals of H),
ch_psi_all.f90 for application of H-eS+P_cv
orthogonalize.f90 for computing P_cv
(h_psi_q.f90 for BAND parallelization only;
instead: h_psi, calbec, s_psi)
Central routine: `greenfunction.f90`

\[G_{k+q} |\psi > = G_{k+q} \{ V_{k+q,k} |\text{evc}\}; \quad q = \{0, \pm \Delta q \ e_i \text{ with } i=x,y,z\} \]

in addition: `apply_operators.f90` , e.g. apply \(V_{k+q,k} \) to \(\text{rhs} \)

`compute_u_kq.f90` prepares unperturbed \(\text{wfc}@k+q \)

NEW: Speed-up for small \(\Delta q \):

resuse \(G_{k+q} |\psi > \) from previous \(q \),

`ch_psi.f90` only for \(q=0 \).

Includes all things for preconditioning, e.g. also

small parts from `phq_init.f90`:

\[\text{eprec} = 1.35*\text{zdotc}(\text{evq},\text{work}) \]
Central routine: `greenfunction.f90`

\[
G_{k+q} \mid \psi \rangle = G_{k+q} \{ V_{k+q,k} \mid \text{evc}\}; \quad q = \{0, \pm \Delta q e_i\} \text{ with } i=x,y,z
\]

in addition: `apply_operators.f90`\(^\star\), e.g. apply \(V_{k+q,k}\) to rhs

`compute_u_kq.f90`\(\star\) prepares unperturbed \(\text{wfc}@k+q\)

Specific topics:

- quantities at \(k\) and \(k+q\) must have the same G-vector ordering; we call \(gk_sort\) only for \(k\), not for \(k+q\).

- symmetry operations that do not map cartesian axes might be – in principle – removed (as done in 5.3.0), but:

 NEW: it works also with full symmetry, if symmetrization is applied at the very end (onto the full tensors) excusively.
LR related routines *(as a general observation)*:

LR in GIPAW has very few dependencies, can be easily decoupled from the code, and can be „librarized“ away (into **LR_Modules**).

As my present personal opinion:

- `greenfunction.f90` (or something like that) should be either kept GIPAW-specific
- or
- `solve_linter.f90` should be reorganized, split-up into less PH-specific logical subroutines, may be all of them kept within the same file.

interface between GIPAW/LR_Modules can be changed accordingly.
Open Question (loosely related to LR):

- Where to put the Berry-phase routines applicable onto NMR/EPR, GIPAW-tree or (partially) PW-core?
- Orbital magnetization as a more general quantity (MTM analogue to MTM, suggesting PW), but to compute accurate du/dk: greenfunction.f90

Proposal: keep it close to “NMR/EPR“, should be found in GIPAW, e.g.:

$$\Delta g_{\mu\nu} = \frac{2}{\alpha} \left. \frac{\partial^2 E_{\text{tot}}}{\partial S_\nu \partial B_\mu} \right|_{\vec{B}=0} = -\frac{2}{\alpha} \frac{\partial M^\text{orb}_\mu}{\partial S_\nu}$$

Work in progress, perspectives:

- Zero-Field Splitting (ZFS) of EPR, both D_{s-s} and D_{SO}!
- NMR/EPR for hybrid functionals
- NMR with spin-orbit coupling, colinear & non-collinear based on relativistic & scalar relativistic (GI)PAW pseudos
- Circular Dichroism of X-ray Adsorption (XMCD) (Matteo Calandra, UG)
Thanks for your attention!
2nd method: beyond perturbation theory

\begin{equation}
H_{\text{spin}} = \frac{\alpha}{2} \vec{B} \cdot \vec{g} \cdot \vec{S} + \sum_{N} \vec{I}_{N} \cdot \vec{A}_{N} \cdot \vec{S} + \vec{S} \cdot \vec{D} \cdot \vec{S}
\end{equation}

basic idea: \[\Delta g_{\mu\nu} = \left. \frac{2}{\alpha} \frac{\partial^2 E_{\text{tot}}}{\partial S_{\nu} \partial B_{\mu}} \right|_{\vec{B}=0} = -\frac{2}{\alpha} \frac{\partial M_{\mu}^{\text{orb}}}{\partial S_{\nu}} \]

How to calculate the derivative \(\partial / \partial S_{\nu} \)?

1. B-field induced spin alignment along \(\vec{e}_{\nu} \):
 \[H_{\text{so}} = \frac{\alpha^2}{4} \vec{\sigma} \cdot (\nabla V_{\text{eff}} \times \vec{p}) \] with \(\vec{\sigma} = \sigma_{z} \vec{e}_{\nu} \)
 \[\Delta g_{\mu\nu} = -\frac{2}{\alpha} \vec{e}_{\mu} \cdot \frac{\partial \tilde{M}_{\mu}^{\text{orb}}(\vec{e}_{\nu}) - \tilde{M}_{\mu}^{\text{orb}}(-\vec{e}_{\nu})}{S - (-S)} \]

2. spin flip
2nd method: beyond perturbation theory

EPR

\[H_{\text{spin}} = \frac{\alpha}{2} \vec{B} \cdot \vec{g} \cdot \vec{S} + \sum_{N} \vec{l}_N \cdot \vec{A}_N \cdot \vec{S} + \vec{S} \cdot \vec{D} \cdot \vec{S} \]

- well defined in finite systems: \(\vec{M}^{\text{orb}} = \frac{\alpha}{2} \langle \vec{r} \times i [\vec{r}, \mathcal{H}] \rangle_{B=0} \)
- periodic systems: **Berry phase formula**

\[\vec{M}^{\text{orb}} = -\frac{\alpha}{2} \text{Im} \sum_{n,k} f_{n,k} \langle \partial_k u_{nk} | \times (\mathcal{H}_k + \epsilon_{nk} - 2\epsilon_F) | \partial_k u_{nk} \rangle \]

\[\Delta g_{\mu\nu} = \frac{2}{\alpha} \frac{\partial^2 E_{\text{tot}}}{\partial S_\nu \partial B_\mu} = -\frac{2}{\alpha S} \vec{e}_\mu \cdot \vec{M}^{\text{orb}}(\vec{e}_\nu) \]

Both methods are now applicable also on metallic systems, e.g. electrons trapped by the conduction band minimum in Si bulk:

Strongly delocalized states:
conduction band electrons in Si: $g_{\text{exp}} = 1.9995$
cc unit cell (2 atoms),
(24 × 24 × 24) MP k-point set:

$g_{\text{DFT} 1} = 1.9991$ (Berry phase)
$g_{\text{DFT} 2} = 1.9990$ (non-eq. GIPAW)

Young et al., PRB 55, 16245 (1997)
Efficient relativistic DFT calculations

scalar-relativistic pseudopotentials:
- Relativistic kinetic energy
- spin-orbit (SO) coupling neglected
Efficient relativistic DFT calculations

scalar-relativistic pseudopotentials:
- Relativistic kinetic energy
- spin-orbit (SO) coupling neglected

full-relativistic approach:
large SO coupling effects, but:
factor-of-40 more computational costs
Efficient relativistic DFT calculations

scalar-relativistic pseudopotentials:
- Relativistic kinetic energy
- spin-orbit (SO) coupling neglected

alternative relativistic approach:
PAW-reconstruction of SO coupling

\[
\Delta \hat{H}_{\text{SO}} = \hat{T}^+ \Delta \hat{H}_{\text{SO}} \hat{T} \\
= \frac{\alpha^2}{4} \left\{ \hat{\sigma} \cdot \left(\nabla V_{ps}(\vec{r}) \times \hat{p} \right) \right\} \\
+ \sum_{\mathbf{R}} \sum_{n,m} |p_{\mathbf{R},n}\rangle f_{\mathbf{R},nm} \langle p_{\mathbf{R},m}| \\
\]

\[
f_{\mathbf{R},nm} = \langle \phi_{\mathbf{R},n} | \hat{\sigma} \cdot \nabla V \times \hat{p} | \phi_{\mathbf{R},m} \rangle \\
- \langle \phi_{\mathbf{R},n} | \hat{\sigma} \cdot \nabla V_{ps} \times \hat{p} | \phi_{\mathbf{R},m} \rangle
\]
Efficient relativistic DFT calculations

scalar-relativistic pseudopotentials:
- Relativistic kinetic energy
- spin-orbit (SO) coupling neglected

alternative relativistic approach:
PAW-reconstruction of SO coupling

\[
\Delta \hat{H}_{SO} = \hat{T}^+ \Delta \hat{H}_{SO} \hat{T} \\
= \frac{\alpha^2}{4} \left\{ \hat{\sigma} \cdot \left(\nabla V_{ps}(\vec{r}) \times \hat{p} \right) \right\} \\
+ \sum_{\vec{R}} \sum_{n,m} |p_{\vec{R},n}\rangle f_{\vec{R},nm} \langle p_{\vec{R},m}|}
\]

ZORA:
\[
\tilde{\nabla} V = \nabla \left(\frac{2c^2}{1 - V/(2c^2)} \right) = \frac{1}{(1 - \frac{V}{2c^2})^2} \cdot \nabla V
\]
Efficient relativistic DFT calculations

scalar-relativistic pseudopotentials:
- Relativistic kinetic energy
- spin-orbit (SO) coupling neglected

alternative relativistic approach:
PAW-reconstruction of SO coupling

\[
\Delta \hat{H}_{SO} = \hat{T}^+ \Delta \hat{H}_{SO} \hat{T} \\
= \frac{\alpha^2}{4} \left\{ \hat{\sigma} \cdot \left(\nabla V_{ps}(r) \times \hat{p} \right) \right\} \\
+ \sum_{R} \sum_{n,m} |p_{R,n}\rangle f_{R,nm} \langle p_{R,m}| \\
\]

\[
f_{R,nm} = \langle \phi_{R,n} | \hat{\sigma} \cdot \nabla V \times \hat{p} | \phi_{R,m} \rangle \\
- \langle \phi_{R,m} | \hat{\sigma} \cdot \nabla V_{ps} \times \hat{p} | \phi_{R,n} \rangle
\]

identical results !
Efficient „reconstruction-only“ approach:

\[\Delta \hat{H}_{\text{SO}} = \frac{\alpha^2}{4} \sum_{R,n,m} |p_{R,n}\rangle \langle \phi_{R,n}| \frac{1}{r} \frac{\partial V(r)}{\partial r} \hat{\sigma} \cdot \hat{L} |\phi_{R,m}\rangle \langle p_{R,m}| \]

relativistic calculations for large systems (500 atoms) possible: